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ABSTRACT  

Parametric resonance in regular waves is discussed. A set of non-linear equations is employed to 
describe the coupling between heave-roll-pitch modes. Limits of stability are the main area of 
interest of the paper. The present paper explores the influence of third order nonlinearities as well as 
the relevance of coupling between the vertical modes and the roll motion in the limits of stability.  

The influence of initial conditions on the development of roll amplifications is investigated and 
the effect of coupled or uncoupled modelling of the roll motion is addressed. 
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1. INTRODUCTION 

Lately, parametric resonance has become a 
source of great attention for the marine 
scientific community, classification societies 
and several other institutions involved in the 
development of ship’s safety rules. Fishing, 
cruise and container vessels are known types of 
hulls that are often subjected to strong roll 
amplifications due to parametric instability 
(Neves et al., 2002, Luth & Dallinga, 1999, 
France et al., 2003). Experimental and 
numerical investigations have contributed to 
enlarge the knowledge of this phenomenon. 
However, there are not closed criteria that 
could let us measure or predict parametric roll 
motion with enough confidence for all kind of 
vessels, yet.  

For many of these ships the simulation 
models available are capable of reproducing 
with confidence the amplification resulting 
from parametric resonance. But, unfortunately, 
there are some known cases of strong 
parametric excitation where the numerical 

models based on Mathieu (or Mathieu-Duffing) 
equation tend to overpredict the resonant 
rolling motions observed in experiments 
(Umeda et al., 2003). Recent works (Neves & 
Rodríguez, 2004, 2005) have shown that a third 
order nonlinear analytical model equivalent to 
a kind of Hill equation can reproduce well such 
extreme situations. This new mathematical 
model may display some interesting dynamic 
features that are still open to investigation. 

Neves & Rodríguez (2004) showed a 
comparison of the limits of stability for the 
second and third order models based on Hsu’s 
approach for the roll variational equation. The 
present paper explores in depth the influence of 
third order nonlinearities as well as the 
relevance of coupling between the vertical 
modes and the roll motion in the limits of 
stability. The above effects are investigated 
through the analysis of the time domain 
numerical responses obtained by systematic 
variation of encounter frequency and wave 
amplitude. This new way of obtaining the 
limits of stability is a more realistic procedure 
of assessing parametric resonance and also has 
an additional feature: a color map that 



 

   

identifies the magnitude of the steady roll 
parametric amplitude.  

Other nonlinear characteristics of 
parametric roll behaviour, such as dependence 
on initial conditions are preliminarily 
investigated.  

2. NONLINEAR MATHEMATICAL 
MODEL 

As stated above, the mathematical model 
proposed by Neves & Rodríguez (2004, 2005) 
has demonstrated good capability in 
reproducing parametric resonance especially 
when strong roll amplifications take place. This 
mathematical model couples the equations of 
motions in heave, roll and pitch and 
contemplates nonlinearities up to the third 
order in the restoring actions as well as in the 
roll damping: 
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On the right hand side of these equations, 
Zw(t), Kw(t), Mw(t) describe wave external 

excitations in the heave, roll and pitch modes, 
respectively. In the left hand side of the 
equations, nonlinear restoring terms include 
dependence on all body modes (z, φ, θ) and 
wave passage (ζ). Dots refer to velocities; 
double dots to accelerations. In all modes, 
coefficients with dotted and double dotted 
subscripts are damping and added masses 
coefficients, respectively. 

In the numerical implementation of this 
mathematical model, added masses, vertical 
motion damping, and wave external excitations 
are assumed linear and are computed using the 
strip method theory. Roll damping is computed 
based on Ikeda’s method as described by 
Himeno (1981); and restoring actions are taken 
into account considering couplings (up to the 
third order) among the heave, roll and pitch 
motions, and the wave profile passing along the 
ship. As demonstrated in previous works 
(Neves & Rodríguez, 2004, 2005) for certain 
hull forms and motions of moderate amplitude, 
nonlinear restoring actions of higher order play 
an important role in the dynamic behaviour. 

Figure 1 illustrates the good agreement 
obtained in the comparisons between 
experimental results and numerical simulations 
for a typical transom stern fishing vessel 
(denominated TS), and also shows how a 
second order model fails to follow the trends. 
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Figure 1   Roll response, Fn=0.30, Aw=0.78 m. 

3. STABILITY ANALYSIS OF ROLL 
PARAMETRIC RESONANCE 

3.1 Analytical Approach – Hsu’s Limits 

Stability of motion may be assessed by 
means of the variational system. In its linear 



 

   

form it may be derived by assuming that the 
nonlinear motions can be expressed as the sum 
of steady oscillatory solutions plus some small 
perturbations:  
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where )(ˆ tz , )(ˆ tφ , and )(ˆ tθ  correspond to 
the heave, roll and pitch well known linear 
solutions (steady), and 3η , 4η , 5η  are the 
corresponding transfer functions. Perturbations 
in the heave, roll and pitch modes are defined 
as )(tξ , )(tϕ , and )(tϑ , respectively. 

The linear variational equation in roll is 
then derived as: 
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where, for simplicity, Be is adopted as an 
equivalent damping moment. In the particular 
case of longitudinal waves, the roll linear 
solution is zero. That is, 0ˆ ≡φ . Hence: 
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Substituting: )()(ˆ 3 zew tCosAtz α+ωη=  
and )()(ˆ

5 θα+ωη=θ tCosAt ew  and decompos-
ing the wave coefficients in their sine and 
cosine terms, we arrive to an expression of the 
following type for the roll variational equation 
(see Neves & Rodríguez, 2004): 
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where R0, R1, and R2 are time-independent 
restoring coefficients, and τ1 and τ2, are the 
phases of the periodic restoring moments 
relative to the wave. In contrast to the second 
order model, where the resultant roll variational 
equation is a Mathieu type, in the third order 
model we obtain a Hill type equation. As can 
be seen from eq. (4), in addition to the Mathieu 
terms two additional contributions appear. 
These new terms, as explained in Authors’ 
previous works, rise interesting nonlinear 
features in the stability analysis of roll 
variational equation: nonlinear stiffness and 
biharmonic parametric excitation.  

The stability analysis of Hill equation is 
presented by Hsu (1963), and when applied to 
equation (4), two instability regions appear 
defined by: 
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! Second Region of Stability (s = 2): 
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The numerical implementation of Hsu’s 
analytical approach for the TS ship in head seas 
under different speeds and for a metacentric 
height (GM) of 0.37 m gives the following 
stability limits (see Figures 2 to 5). Different 
from past Authors’ works, in these cases 
damping is considered, although for simplicity 
only the linear damping was taken into 
account. 
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Figure 2   Analytical approach, Fn=0.11 

As stated in Neves & Rodríguez (2004) and 
in Rodríguez (2004), the introduction of 
damping shortens the instability regions and 
displaces to the right the tuning frequency of 
the minimum threshold wave amplitude. Other 
main features of the Hsu’s instability regions 
have already been discussed in Neves & 
Rodríguez (2004). 
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Figure 3   Analytical approach, Fn=0.15 
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Figure 4   Analytical approach, Fn=0.20 
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 Figure 5   Analytical approach, Fn=0.30 

Although the limits of stability using the 
analytical approach is a valuable and easy tool 
in the ship design stage as a rough indicator of 
the extension and location of the instability 
regions, they do NOT provide quantitative 
information, i.e., the steady amplitude of 
parametric rolling. 

An alternative way of computing the 
instability regions is obtained by solving the 
motion equations for a large set of waves 
amplitudes and tuning factors (encounter 
frequency/natural roll frequency), which will 
be varied systematically. Then, each time 
instabilization takes place (roll amplification), 
a point will be plotted in the corresponding 
plane (Aw vs. tuning factor). Depending on the 
magnitude of the steady roll amplitude, these 
points will have an identifying color.  

Yet this procedure is much more time 
consuming for computation, it has the 
advantage of letting us know the instability 
regions not only qualitative, but also 

quantitatively. 

Under this alternative method, two different 
numerical approaches could be used: one 
assuming an uncoupled nonlinear roll motion 
equation, and the other using the 3 DOF 
motion equations coupling the heave, roll and 
pitch modes.  

3.2 Numerical Approach – Uncoupled 
Roll Motion 

Here, the vertical modes are assumed linear 
while the rolling motion keeps all its nonlinear 
terms, resulting in an uncoupled roll equation. 
When the analytical approach was used, we 
analyzed the behaviour of the roll variational 
equation, which, as seen above, is linear. So, 
by comparing the analytical and the numerical 
uncoupled roll approach is possible to identify 
the effects of pure roll nonlinearities, which in 
the case of the former approach cancel due to 
the null linear roll response. Figures 6 to 9 
show the instability regions obtained 
integrating the nonlinear roll equation of 
motion in the time-domain for an initial 
condition in roll of 2º. 
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Figure 6   Num. uncoupled approach, Fn=0.11 

As can be noted from figures 6 to 9, the 
shape and location of the regions of stability 
agree well with the analytical approach. This 
would indicate that pure roll nonlinearities 
have little or NO influence on these 
characteristics of the limits. 
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Figure 7   Num. uncoupled approach, Fn=0.15 
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Figure 8   Num. uncoupled approach, Fn=0.20 
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Figure 9   Num. uncoupled approach, Fn=0.30 

Concerning the amplitudes of parametric 
rolling, as expected, the greater the wave 
amplitudes the greater the responses within the 
instability regions. At low speeds parametric 
roll amplitudes grow gradually as wave 
amplitude increases (up the top limit), 
however, at high speeds (Fn = 0.20 and Fn = 
0.30), parametric rolling is violent starting at 
angles of 20° and rapidly reaching capsizing 
angles for little increases in wave amplitudes 
(see fig. 9). Another characteristic observed at 

high speeds is the appearance and accentuation 
of a concavity in the top limit, to the right of 
the Mathieu exact tuning (ωe/ωn4 = 2.0). 

3.3 Numerical Approach – 3 DOF 
Motion 

A more refined and reliable way of getting 
the limits of stability for parametric resonance 
is to solve numerically the three-degrees-of 
freedom (DOF) ship motion equations shown 
in section 2 of the present work, and plot the 
responses, as explained in the previous section. 
This more complete approach when applied to 
the same conditions tested above for TS ship 
resulted in the limits of stability shown in 
figures 10 to 13. 

In general, the shape and location of first 
instability regions (ωe = 2.0ωn4) obtained with 
the 3 DOF numerical approach agrees well 
with the previous approaches. However, when 
comparing the limits of figures 10 to 13 with 
its corresponding ones of figures 6 to 9, 
relevant differences can be observed in the 
amplitudes of parametric rolling for all speeds 
cases. Such differences reflect the influence of 
nonlinearities of heave and pitch, which in 
general tend to control the magnitude of roll 
amplifications. 
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Figure 10   Num. 3 DOF approach, Fn=0.11 (φ0 
= 2º) 

Another significant and surprising feature is 
the notoriety that the second region of 
instability (ωe = ωn4) gain in comparison to the 
other approaches: not only the wider area, but 
also the trend and the magnitude of unstable 



 

   

roll. Concerning the concavity of the instability 
regions at high speeds pointed out in the 
previous section, we confirm here its existence 
and also call the attention of the readers for the 
risk of getting more critical responses at 
frequencies higher than the Mathieu tunings, 
even for quite low wave amplitudes. 
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Figure 11   Num. 3 DOF approach, Fn=0.15 (φ0 
= 2º) 
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Figure 12   Num. 3 DOF approach, Fn=0.20  
(φ0 = 2º) 
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Figure 13   Num. 3 DOF approach, Fn=0.30 
(φ0 = 2º) 

4. OTHER NONLINEAR 
CHARACTERISTICS OF 
PARAMETRIC ROLL BEHAVIOUR 

Based on the procedure outlined in the 
previous sub-section, it is possible to compute 
the limits of stability for different initial 
conditions, and identify the conditions that 
bring different steady parametric roll 
amplitudes. This phenomenon would indicate 
the possibility of occurrence of jump effect, 
bifurcation or even chaos. Figure 14 illustrates 
the limits of stability for the same conditions 
showed in figure 12, but considering an initial 
condition for roll of 20º. 

It is obvious that the first influence of initial 
conditions is to modify the size of the 
instability regions. In the case illustrated in 
figure 14, the first region of instability became 
greater (growing upwards and to the left side). 
This additional instability region denotes a 
zone of initial condition susceptibility. Then, a 
good beginning for the study of typical 
nonlinear behaviour would be the exploration 
of this zone. 
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Figure 14   Num. 3 DOF approach, Fn=0.20 (φ0 
= 20º) 

Time simulations are one of the most used 
tools for exploring such behaviour. Figures 15 
to 17 show time series for three different initial 
conditions in roll for the case of TS ship at 
Fn=0.20, Aw=0.95 m and ωe = 2.158 ωn4.  
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Figure 15   Time series, Fn=0.20; φ0 = 2º 
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Figure 16   Time series, Fn=0.20; φ0 = 6º 
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Figure 17   Time series, Fn=0.20; φ0 = 20º 

As expected, for these parameters different 
initial conditions resulted in different roll 
responses. For the smaller initial conditions no 
parametric resonance was developed, as had 
been noted in the stability map of figure 12 (2º 
of roll initial condition). For the initial 
condition larger than 6º, parametric rolling 
develops in an erratic way, no single amplitude 
is observed. Then, it becomes necessary to look 
at phase diagrams in order to identify if there is 
a multiperiod response or the possibility of 
occurrence of chaos. Figures 18 to 20 show the 
phase diagrams for the respective conditions 
shown in the time series, initial conditions φ0 = 
2º, φ0 = 6º and φ0 = 20º. 
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Figure 18   Phase diagram, Fn=0.20; φ0 = 2º 
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Figure 19   Phase diagram, Fn=0.20; φ0 = 6º 
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Figure 20   Phase diagram, Fn=0.20; φ0 = 20º 

Clearly, it is noted that the small initial 
condition response is stable and does NOT 
develop parametric rolling. In other words, the 
response is attracted by a single attractor, 
which in this case corresponds to the null 
parametric rolling attractor. 

For the larger initial conditions, the 
responses are attracted by a “not-easy-to-
identify attractor”. We can just say that it is not 
a single point or a limit cycle attractor. Maybe 
a strange attractor or even a chaotic attractor, 
but a definite answer to this question should be 
given based on more specific nonlinear 
analysis tools such as bifurcation analysis, 
Poincaré mapping, Lyapunov exponents, etc. 
This kind of analysis is out of the scope of the 
present work, but literature on this subject is 
ample (Guckenheimer & Holmes, 1983, 
Seydel, 1988, Liaw et al., 1993).  
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Figure 21   Jump in roll response at high wave 
amplitudes, Fn=0.20. 

Figure 21 shows the roll amplitudes against 
wave amplitude for three tunings around the 
exact Mathieu tuning ωe = 2.0 ωn4. Again, for 
high amplitudes (extreme right of the graph) 
abrupt changes in roll response are observed, 
indicating the occurrence of a bifurcation for 
changing wave amplitudes. 

5. CONCLUSIONS 

Based on a third order mathematical model 
for parametric rolling, three approaches for 
computing the limits of stability have been 
presented. 

The analytical approach has shown good 
agreement with the numerical responses, and 
due to its relatively easy implementation, 
should find good applicability in the ship 
preliminary design stage. One limitation of the 
analytical approach is that it does not provide 
information on the magnitude of parametric 
rolling. To overcome this inconvenience, two 
numerical approaches have been proposed. One 
using the uncoupled roll equation, and the other 
applying the full nonlinear equations coupling 
heave, roll and pitch. Comparing the two latter 
approaches, a relevant conclusion can be 
drawn, i.e., the extreme importance of 
nonlinear couplings between the vertical modes 
and roll in the determination of parametric roll 
amplitudes. As can be noted in the respective 
figures, the uncoupled numerical approach can 

induce us to wrong predictions of parametric 
amplitudes. 

Another contribution of the present 
investigation is the identification of initial 
conditions susceptibility zones within the 
instability regions, so that the analysis of 
typical nonlinear phenomena can be focused on 
these zones. Preliminary analysis of these 
zones has shown great influence of initial 
conditions on the development of parametric 
rolling. 
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