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ABSTRACT  

A unified mathematical model describing both manoeuvring and seakeeping motions of surface 
displacement ships is used for numerical investigation of the ship motions in turning manoeuvres under 
action of regular waves. The 6DOF model combines a semi-empiric model for the still-water 
manoeuvring forces with a model for the seakeeping forces built as a generalization of the ordinary strip 
method. Comparative simulations included unrestrained and restrained straight runs in beam seas, and 
turning manoeuvres in still water and under action of waves, and are demonstrating that the attained 
instantaneous roll angles can be higher in turning than in the straight run.  
 
Keywords: turning manoeuvre, rolling, regular waves, simulation. 
 

1. INTRODUCTION 

Historically, the ship rolling was the first kind 
of ship motions in waves studied theoretically 
and it remained the most important one from the 
viewpoint of the ship safety. While the first 
studies were dealing with a ship at zero speed 
and subject to the action of regular beam seas, 
further developments of the theory accounted for 
the speed of advance and already at arbitrary 
wave encounter angles.  

Instead of simpler mathematical models 
based on an isolated roll equation, effects of 
coupling were accounted for leading to 
sophisticated 6DOF time-domain simulation 
codes. Also, consideration of the irregular waves, 
and/or nonlinear phenomena, such as the 
parametric and sub-harmonic resonance etc. was 
done. 

At the same time, one basic assumption, 
which can be considered as traditional for the 
seakeeping in general, was kept unchanged: the 
reference motion of the ship was assumed to be a 

rectilinear motion with constant speed and zero 
mean drift angle. In fact, the problem statement 
involving this assumption not only is the simplest 
possible but is also reasonable and rather well 
based. First of all, running in straight path is the 
predominant regime for most seagoing vessels. 
Another typical situation is stationing, i.e. free 
drifting or positioning, at zero speed but this is 
just a particular case of the previous situation. 
Any sort of manoeuvring takes only a small 
fraction of many ships’ operational time.  

Also, from certain viewpoints, the straight run 
can occur to be one of the most dangerous 
options: in the case of an unfavourable 
combination of the parameters of the incident 
waves and of the ship’s speed and heading, any 
possible resonance will benefit from a long and 
steady exposure and will be able to develop up to 
a possible critical situation. 

On the other hand, however, it is known from 
the maritime practice that manoeuvres in stormy 
weather can become dangerous and are to be 
avoided completely or should be performed in a 
gentle and careful way as otherwise the 
combined effect of the manoeuvre-induced roll 



 

   

and of the wave action can result in fatal 
consequences. But there are many situations 
when hard manoeuvring in extremely rough sea 
cannot be avoided: rescue and salvage 
operations, weapon- or collision-avoidance 
manoeuvres etc. This indicates that rolling of a 
ship moving along a curvilinear trajectory 
deserves special study and, probably, such a 
statement should be considered as standard in the 
future. 

Unfortunately, so far, too few studies, if any, 
related to this situation are known. This is caused 
not only by a possible underestimation of the 
problem but also by the lack of suitable 
mathematical models. Most of such models 
(Ottosson & Bystrom, 1991, Bailey & Price, 
1997, Ayaz & Vassalos, 2003) were models 
devised primarily for studying manoeuvring 
motion in waves and with the roll considered as a 
secondary effect.  

A certain exception happened to be a study 
by Remez (1985) who studied rolling in the 
steady turn from the viewpoint of the seakeeping 
safety. However, his mathematical model was 
deficient in the sense that no manoeuvring-
originated forces participated in the roll equation. 
As result, Remez came to the then obvious 
conclusion that the maximum attainable absolute 
values of the roll angle during the turn were 
always inferior to those reached in the most 
unfavourable corresponding straight run which is, 
however, contradicting the common sense and 
the practice of the ship operations.  

Moreover, even in still-water manoeuvring, 
some ships show quite significant instantaneous 
heel angle absolute values: over 25deg according 
to Trägårdh (2003). No doubt, this value can be 
tangibly amplified when the incident wave’s 
action is added. In addition, it was found that 
such a large dynamic heel correlated with the 
dynamic trim. This indicates that the usual 4DOF 
manoeuvring model is not always able to predict 
this phenomenon correctly. 

On the other hand, a number of 6DOF time-
domain seakeeping models appeared (Pawlowski 

& Bass, 1991, Belenky et al., 2003) which 
contain certain manoeuvrability elements, such as 
the rudder and propeller forces and are often 
complemented with a numerical representation of 
a simple automatic controller to maintain the 
straight course, i.e. the canonical seakeeping 
regime, in the presence of wave disturbances. 
However, typically such codes miss appropriate 
description of the hull manoeuvring forces and 
do not fairly reproduce the ship’s behaviour in 
manoeuvring. 

It is rather difficult, anyway, to build a 
mathematical model equally suitable for 
manoeuvring and seakeeping studies as the 
quasi-steady viscous forces are highly essential in 
the first case while the substantially unsteady 
potential forces, including the hydrostatic part, 
dominate in seakeeping. An appropriate direct 
CFD modelling based on the (still Reynolds-
Averaged) Navier–Stokes equations could, in 
principle, provide adequate description of all 
physics. But this approach is still highly 
numerically inefficient even when an exquisite 
hardware is used. Another problem is connected 
to difficulties in arranging an appropriate 
turbulence model which is especially difficult in 
the highly challenging case of curvilinear motion 
of a surface displacement ship as the flow around 
the ship’s hull is then rich in separations, re-
attachments, vortex formation, let alone 
substantial interaction with the rudder and 
propeller. That is why, all practical manoeuvring 
models are based on empiric data combined with 
various more or less justified assumptions. As the 
experimentally determined forces contain also 
inseparable potential parts, there correct 
superposition with the seakeeping loads is not 
trivial. 

The present study is based on a newly 
developed approximate manoeuvring-and-
seakeeping mathematical model suitable for 
slender displacement ships. Some elements of 
this model are described in (Sutulo & Guedes 
Soares, 2005). The model is used in this study to 
model the ship rolling in turning manoeuvres by 
means of the time-domain simulation of the 
manoeuvring motion in regular sea of moderate 



 

   

height and weak steepness. As the used model is 
nonlinear, and accounts for most coupling 
effects, it can potentially reveal the parametric 
resonance, describe the broaching phenomenon 
in astern sea and the capsizing situations. 
However, envisaging corresponding studies in 
the future, this particular contribution does only 
deal with the situation close to the main roll 
resonance with the main purpose of comparing 
the roll’s severity in straight runs and in relatively 
tight manoeuvres. Only full-helm turning 
manoeuvres are considered here as they can be 
considered a priori as being of the most 
dangerous ones, especially at the initial phase 
which also is similar to the initial phase of many 
other manoeuvres, like fast course changes, fast 
lane changes etc. 

2. SHIP MATHEMATICAL MODEL 

2.1. Frames of Reference 

The following right-hand Cartesian frames of 
reference are used: 

The Earth-fixed frame 0 0 0 0O ξ η ζ  with the 
origin 0O  and the 0ξ -axis lying on the 
undisturbed free surface (some appropriate 
direction of this axis can be chosen arbitrarily). 
The 0ζ -axis is directed vertically downwards. 

The body axes Cxyz  linked to the ship 
treated as a rigid body. The x -axis lies in the 
centre-plane of the ship and is directed to the 
bow. It is supposed that at some initial time 
moment 0t =  and at the ship’s equilibrium 
position this frame coincides with the Earth 
frame i.e. the z -axis is directed from top to 
bottom and the y -axis—to the starboard. The 
body frame’s position and orientation with 
respect to the Earth frame is described by the 
origin’s advance Cξ  , transfer Cη , sinkage (or 
heave) Cζ , and by the three Euler angles defined 
as usual: the heading angle ψ , pitch angle θ  and 
roll angle ϕ . 

The body semi-fixed axes Oξηζ  differing 
from the body-fixed axes Cxyz  by not being 
involved into the heave, pitch and roll. 

During the evaluation, one more system of 
co-ordinates 1 1 1 1Oξ η ζ  was used which differed 
from the frame Oξηζ  by its non-involvement 
into the wave-induced yawing. These axes are 
usually called the seakeeping axes in the 
orthodox linear consideration. 

2.2. Basic Equations of Motion 

The ship is assumed to be rigid. The Euler 
equations of motion in the non-central body axes 
are written as: 
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where m  is the ship’s mass, Gx  and Gz  are 
the centre-of-mass’ co-ordinates; 

, , , , ,X Y Z K M N  are the total forces and 
moments for the surge, sway, heave, roll, pitch, 
and yaw respectively, and , , , , ,u v w p q r  are the 
(quasi)-velocities of surge, sway, heave, roll, 
pitch and yaw respectively. 

The dynamic equations are also 
complemented with the standard kinematic 



 

   

differential equations linking the generalized ship 
co-ordinates with the quasi-velocities. 

For each force or moment component 
, , ,F X Y N= K , the following decomposition 

takes place: 

0 ,g sk m skF F F F F= + + −  (2)

where the subscripts have the following 
meaning: g  stands for the gravitational forces; 
sk  —seakeeping forces; m  —manoeuvring 
forces; 0sk  corresponds to the seakeeping forces 
which are computed at the zero wave amplitude 
and are subtracted to eliminate double account of 
potential components present in both the 
seakeeping and manoeuvring loads. In the 
slender-body theory, the last component is 
defined by the zero-frequency added mass 
longitudinal distribution. When integrated along 
the reduced ship length to account for viscous 
effects, as done in the present study, this 
distribution results in the horizontal plane in the 
slender-body estimate of the manoeuvring forces 
which are introduced here independently. 

 
2.3. Seakeeping Forces 

Assumptions. The ship is assumed to be 
slender so that the strip method is applicable and 
the oncoming waves are regular, with constant 
parameters. The flow is supposed to be potential 
and described with the absolute fluid velocity 
potential 0 0 0( , , )φ ξ η ζ  satisfying the Laplace 
equation within the fluid domain and all the usual 
boundary conditions. The free-surface boundary 
condition is supposed to be linear and satisfied on 
the undisturbed free surface. 

Representation of the Velocity Potential. As 
usual, the velocity potential can be decomposed 
as follows:  

,dwr φφφφ ++=  (3)

where rφ  is the potential caused by the ship 
motions, wφ  is the incident wave potential, and 

dφ  is the diffraction potential. 

The potential rφ  satisfies the usual body 
boundary condition on the instantaneous 
submerged hull surface BS  and the incident wave 
potential is taken as 

0 1 0 2 0( )Re ,k i k k i tw
w

iga e eζ ξ η ωφ
ω

− − + =   
 (4)

where 1 0cos wk k χ= , 2 0sin wk k χ= , 
2 /k gω=  is the wave number, ω  is the wave 

frequency, and 0wχ  is the wave propagation 
angle with respect to the axis 0 0O ξ . 

Decomposition of Seakeeping Forces. the 
ship velocity CV  is supposed to be constituted of 
two parts: the steady velocity of advance C 0V  
and the seakeeping part per se C1V . A similar 
decomposition can be made in a more general 
seakeeping-and-manoeuvring formulation. For 
the total velocity of any point fixed in the moving 
frame ( , , )x y zV it can be written: 

0 1( , , , ) ( , , , ) ( , , , ),x y z t x y z t x y z t= +V V V (5)

where the subscript 0  corresponds to the 
base manoeuvring motion which is assumed to 
be time-dependent but changing slowly: time 
derivatives of any variables related to that motion 
are neglected. The variables with the subscript 1  
correspond to the wave-induced motion and their 
derivatives are not neglectable. The velocity 
potential can be represented similarly i.e. 

0 1φ φ φ= + , where 0φ  is the slowly-varying 
potential associated with the base manoeuvring 
motion and 1φ  is the potential originating from 
the incident waves’ action. 

Using the usual Bernoulli pressure equation 
written in the semi-fixed axes Oξηζ  and 
applying the subdivision of the velocity and of 
the potential into the slow and fast parts the 



 

   

following representation of the pressure is 
obtained: 

0 01 1 2 ,hsp p p p p p= + + + +  (6)

where hsp gρ ζ= is the hydrostatic pressure; 
21

0 0 02 ( )p ρ φ ρ φ= ⋅∇ − ∇0V is the usual quasi-
steady contribution whose second term is 
dropped in linear theories; 

01 0 0 1p ρ φ ρ φ φ= ⋅∇ − ∇ ⋅ ∇1V  is the quasi-steady-
unsteady interaction part; 

1 1 1( / )p tρ φ ρ φ= − ∂ ∂ + ⋅∇0V  is the usual first-
order seakeeping contribution, and 

21
2 1 12 ( )p ρ φ ρ φ= − ∇ + ⋅∇1V  is the pressure 

creating a part of the second-order seakeeping 
force, while another second-order contribution 
stems from the variability of the wetted hull 
surface over which the total pressure is 
integrated. 

As the total hydrodynamic force F  and 
moment M  are linear functionals of the pressure 
distribution, they can be decomposed similarly to 
the pressure itself. The contribution of 0p  will 
not be considered further as it relates to the 
manoeuvring part of the forces accounted for 
outside the potential theory. Similarly, dropped is 
the part associated with the interaction pressure 

01p  as this part is neglected in most seakeeping 
theories and can only be important for fast 
vessels. The part related to 2p can be essential in 
manoeuvring problems but is currently dropped 
for simplification purposes as it constitutes just a 
part of the second-order force. 

The scalar product in the second term in the 
equation for 1p  can represented as 

1 1
1 0 0 0( ) ,V V rξ η

φ φφ ξ
ξ η

∂ ∂⋅∇ = + +
∂ ∂0V

 
(7)

where 0 ,V ξ η  are the ship velocities’ projections in 
the semi-fixed axes. 

The first term is present in normal seakeeping 
theories while the second term appears due to the 
more general character of the base motion. At 
present, there are reasons to neglect it as its 
contribution can only be expected to be 

comparable to that by the first term at large local 
drift angles which can only happen in the low-
speed manoeuvring when the term containing the 
local derivative 1 / tφ∂ ∂  will dominate anyway. 
In addition, on a slender ship this contribution 
will be mainly compensated by the term 

0 1ρ φ φ− ∇ ⋅ ∇ . 

As 1 ,r w dφ φ φ φ= + +  the force can be 
decomposed similarly and the radiation force is 

0d d ,r r
r F F

S S

F n S V n S
t ξ

φ φρ ρ
ξ

∂ ∂= −
∂ ∂∫ ∫

 
(8)

where Fn  is the generalized projection of the 
normal n . 

Connection Between the Frequency Domain 
and the Time Domain. Considered is the Fourier 
image ˆ( )φ ω  of the unsteady radiation potential 

( )tφ  (all the spatial arguments are dropped). As a 
radiation force component ( ), 1, ,6riX t i = K is 
represented as 

0 d ,ri r i
S

X V n S
t ξρ φ

ξ
 ∂ ∂= − ∂ ∂ 
∫

 
(9)

its Fourier image is 

0

ˆˆˆ ( ) d d ,r
ri r i i

S S

X i n S V n Sξ
φω ωρ φ ρ
ξ

∂= −
∂∫ ∫ (10)

where the wetted surface S  is supposed to be 
invariant or depending on the time parametrically 
so that this could be ignored in evaluating the 
Fourier transform. 

Further, the Fourier transform of the radiation 

potential is expressed through the radiation 

functions 1 6
ˆ ˆ, ,φ φK  and the complex amplitudes 

of the generalized velocities 1 6
ˆ ˆ, ,U UK  as 

6

1

ˆ ˆ ˆ ,r i i
i

Uφ φ
=

=∑ where ˆˆ , 1, 4,5,6j jU i jωξ= = , 

2 2 0 6
ˆ ˆÛ i V ξωξ ξ= − , 3 3 0 5

ˆ ˆÛ i V ξωξ ξ= + , and where 
ˆ

jξ  are the displacements’ complex amplitudes. 



 

   

Representation of the first-order force on a 
slender ship. According to the strip method, the 
radiation forces in the frequency domain are 
represented as  

5 3

6 2

ˆ ˆ ( )d ,

ˆ ˆ ( )d ,

r
L

r
L

X R

X R

ξ ξ ξ

ξ ξ ξ
′
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= −

=

∫

∫

 
(11)

where the integration interval L′  is the part of the 
ship’s length depending on the force component 
and subcomponent in concern, and the transverse 
loading is: 
 

4

2
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(12)

and where the sectional complex added masses 
are defined as usual through the complex 
potential distribution and the sectional 
generalized velocities are: 

0
2 2 6 6

0
3 3 5 5 4 4

ˆ ˆ ˆˆ ( ) ,

ˆ ˆ ˆ ˆˆ ˆ( ) , ( ) .

V
u U U U

i
V

u U U U u U
i

ξ

ξ

ξ ξ
ω

ξ ξ ξ
ω

= + −

= − + ≡
(13)

Then, the final relations for the radiation 
forces on a slender hull in the frequency domain 
will be 

6

2
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k

X A U jω ω ω
=

= =∑ K (14)

where the complex amplitude functions are: 

0

2
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ωµ µ µ µ
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(15)

Here, the ship complex added masses 
ˆ ( )jkµ ω are obtained through appropriate 

weighted integration of the sectional complex 
added masses ˆ ( , )rµ ξ ωl  over the entire ship 
length L  while the quantities ˆ ( )jkµ ω are 
obtained similarly but integrated are the 
derivatives ˆ /rµ ξ∂ ∂l  along the reduced 
length L′ . 

These forces are transformed into the time 
domain by using the method of auxiliary state 
variables described by Sutulo & Guedes Soares 
(2005). The resulting model is still a set of 
ordinary differential equations though of a much 
higher order (over 200 in the present 
implementation). 

Hydrostatic and Froude–Krylov forces. These 
forces can be easily computed with the only 
assumption of the absence of the water surface’ 
deformation due to presence of the ship. In the 
current implementation, also the longitudinal 
curvature of the hull surface is neglected. As this 
force must be estimated with account for the 
actual wetted surface, the latter is found as the 
intersection of the entire hull positioned with 
actual instantaneous values of the heave, pitch 
and roll with the instantaneous water surface 
which is described as  

0 0[ cos( ) sin( )][ ( )] ,w wiki t t
w wa e e ξ χ ψ η χ ψωζ − − + −+Φ= − (16)

where 0 0 0 0( cos sin )C w C wk ξ χ η χΦ = − + is the 
total wave phase and the real part is supposed to 
be taken. The wave profile at any ship section 
can be easily determined and this defines 
approximately the wetted surface at any given 
instant. The hydrostatic and Froude–Krylov 
forces hsk wkX X+  are then computed as follows: 

0 0

[ ( )]

[ cos( ) sin( )]

d

d .w w

i t t
hsk wk w

S

k ik
k

S

X X g S ga e

e n S

ω

ζ ξ χ ψ η χ ψ

ρ ζ ρ +Φ

− − − + −

+ = − −

×

∫

∫
(17)

Diffraction forces. This part of the excitation 
forces is also evaluated under the assumption that 



 

   

the wetted surface doesn’t participate in the 
wave-induced motion although in the final 
formulae this assumption can be lifted. Then, in 
the frequency domain, the primary diffraction 
force representation is quite similar to that for the 
radiation potential. 

After using the second Green identity, the 
boundary condition ( ) ( )ˆ ˆ/ /d wn nφ φ∂ ∂ =− ∂ ∂  on S  
for the diffraction potential, and the Tuck 
transformation (Salvesen et al., 1970), the 
following formulae for the Fourier images of the 
diffraction forces on a slender hull: 

(1) (2)

(1) (2)
5 3 3

(2)
3

(1) (2)
5 2 2

(2)
2

ˆ ( )d ( ), 2,3, 4;
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d d d
L L

m d m

d d d
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m d m
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X f f
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X f f

f
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ξ ξ ξ ξ ξ ξ

ξ ξ
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ξ ξ

′
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= + =

= − −

−

= +

+

∫

∫ ∫

∫ ∫

(18)

where mξ  is the last section corresponding to the 
end of the length L′ , (1)

dk dkf i fω= , (1)
0dk dkf V fξ= , 

and 

cos( )

sin( )
2 3

ˆ[ sin( ) ] d ,

w

w

iki
dk w

k ik
w k

C

f a e e

n in e C

ξ χ ψ

ζ η χ ψ

ρω

χ ψ φ

− −Φ

− − −

= −

⋅ − −∫ (19)

where k̂φ  are the two-dimensional radiation 
functions for each contour C . As within the 
linear theory at slowly varying base motion 
parameters, the diffraction force will vary in time 
almost harmonically i.e. with some slowly 
varying encounter frequency eω , the time 
domain representation of the diffraction forces 
will be 

ˆ( ) ei t
dk dkX t X e ω=  (20)

The instantaneous encounter frequency is 
then estimated as 

0 0( cos sin ).e w wk V Vξ ηω ω χ χ= − +  (21)

 
2.4  Still-Water Manoeuvring Forces 

Any suitable still-water manoeuvring 
mathematical model could be used as the base 
model for describing the “manoeuvring” 
contribution mF . In this particular study, the 
well-known 4DOF model developed by Inoue et 
al. (1981) was preferred but the implementation 
of this model in the wave manoeuvring code had 
certain peculiarities. 

Although the original model is 4DOF, all the 
hydrodynamic forces depend also on the ship’s 
draught and trim. These two parameters can be 
assumed to be varying in course of the simulation 
and this transforms the model into an effectively 
6DOF one. 

Although the experiment-based yawing 
moment is dependent on the roll angle, this 
dependence is only valid for the roll angles not 
exceeding (or slightly exceeding) 10deg in 
absolute value. As extension of this range 
requires additional captive-model tests, in this 
implementation the regressions were simply 
extrapolated as constant limiting values. 

The angle of attack of the rudder is computed 
with account for the wave-induced velocities. 

3  NUMERICAL RESULTS 

3.1  Ship Description 

One of the well-known benchmark ships, 
namely the container ship S-175 was chosen for 
simulations. The ship’s length between the 
perpendiculars is 175m, breadth 25.4m, draught 
9.5m, mass (as estimated) 24571.25 tonnes. The 
centre of mass’ elevation 9.52mKG = , the 
estimated transverse metacentric height 

1.02mGM = , and the natural roll period is 18s. 
The body plan of the ship as described in the 
program’s input is shown on Figure 1, with all 
the input vertices present. More details about the 



 

   

vessel’s particulars can be found in (ITTC, 
1983). 

 
Figure 1  Ship body plan 

The ship is directionally stable in still water 
though the stability margin is rather low. All the 
simulations were carried out with the approach 
speed of 15 knots although the design speed for 
this ship is equal to 22kn. The roll damping 
coefficient was assumed as recommended by 
(ITTC, 1983). The simulated decay curve is 
shown on Figure 2. 

 
3.2  Results of Simulation 

Sea Conditions. All simulations, except those 
in still water, were performed on regular beam 
seas (at least, at the approach phase) with the 
steepness 1/80 and with three frequencies:  
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Figure 2  Roll decay curve 

0.35s-1 corresponding to the ship’s natural 
frequency in roll, 0.292s-1 and 0.403s-1.  

 
Constrained Straight Runs. Strictly straight 
runs were simulated to validate the code 
against the results available for this ship. 
Instead of using an autopilot, the ship was 
artificially constrained in heading and in the 
rate of yaw. Additional constraints were also 
tried for all the degrees of freedom except for 
the roll and surge but that did not change the 
roll output substantially. Truncated time 
histories for the three mentioned wave 
frequencies are presented on Figures 3 through 
5. Further simulations did not reveal changes in 
the ship’s behaviour. A good or reasonable 
agreement with the published amplitude data 
was found for roll (demonstrated below) as 
well as for other motions. 

Free Straight Runs. Free runs with the rudder 
fixed in neutral position were simulated as well. 
In still water such simulation do not lead to 
interesting results as the ship keeps on the 
straight path for long, and are mainly used for 
checking purposes. 

The situation changes dramatically in a 
seaway as an uncontrolled ship in still water and 
in absence of wind is never directionally 
asymptotically stable and can change her 
heading. In most cases, these changes are 
performed at a relatively low rate (except for the 
case of broaching not considered here) but under 
continuous action of the wave excitation forces 
the resulting trajectory becomes substantially 
curvilinear and periodic with the lowest 
harmonic’s frequency much inferior to the 
instantaneous wave encounter frequency.  

The time histories for the resonance case and 
the simulation time 50 minutes are presented on 
Figures 6 and a stretched 200s interval of the 
same process—on Figure 7. It is clearly seen that 
the wave-induced oscillations are modulated with 
a much lower frequency corresponding to the 
ship’s spontaneous course performing a sequence 
of turns and a similar picture was observed with 



 

   

the waves below and above resonance. However, 
all these cases correspond to significant although 
low-slope regular waves with the height varying 
from 4.7 to 9 meters and such behaviour doesn’t 
seem impossible for a beam sea directed initially 
to the starboard. 

Several simulations on lower-height waves 
resulted in trajectories without intersections i.e. 
the ship was meandering. However, in all the 
cases of spiralling or meandering, the ship in the 
mean was displacing strait, along some oblique 
virtual path. 

 
 

Figure 3  Constrained straight run time 
histories at the resonance wave frequency 

0.35ω =  

 
 

Figure 4  Constrained straight run time 
histories at 0.292ω =  

 
Figure 5  Constrained straight run time 

histories at 0.403ω =  
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Figure 6  Free straight run time histories at 

0.35ω =  
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Figure 7  Free straight run: time histories at 

0.35ω =  (stretched) 

In other words, the ship becomes in a certain 
sense directionally asymptotically stable in the 



 

   

average while this can never happen in still water 
and in absence of wind. A somewhat similar 
result was obtained by Ananyev & Gorbachova 
(1993) through analysis of stability of the motion 
described by a linear equation of yaw with 
periodically varying coefficients. However, as 
the mathematical models are very different, it still 
cannot be stated with certainty that in the both 
cases the same phenomenon was traced. 
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Figure 8  Free straight run trajectory at 

0.35ω =  
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Figure 9  Turning manoeuvre: time histories in 
still water 

Turning Manoeuvres. First, the turn with the 
35 degrees helm was simulated in still water to 
reveal the roll triggered by the manoeuvre per se. 
Time histories for several kinematic parameters 
are shown on Figure 9. As usual, after a small 
yank inwards, the ship rolls outside the turn 

reaching dynamically 4 degrees in this case but 
the steady turn for this relatively stable ship and 
low approach speed is less than two degrees. 

Then, simulations of the same turn but on the 
roll-resonant regular waves were performed with 
different values of the manoeuvre delay time 
which is the time interval between the beginning 
of simulation and the start of the rudder’s 
deflection. The minimum delay time was 
assumed to be 24s as judging from the straight 
run simulations, the rolling is practically 
developed by this time. Then the delay was 
varied with the 4.5s increment which was one 
quarter of the roll period.  
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Figure 10  Turning manoeuvre: time histories 
at 0.35ω =  
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Figure 11  Turning manoeuvre: time histories at 

0.35ω = (stretched). 



 

   

As the largest observed absolute values of the 
instantaneous roll angle corresponded to the 33s 
delay, all the displayed results refer to this case. 

The full time histories are shown on Figure 
10 and their stretched cut-off—on Figure 11. 
Qualitatively, the general view of the time 
histories did not differ too much from the free 
straight runs case but the period is different and 
they show more asymmetry with respect to the 
zero-roll line. This is explained by tighter turns 
with the rudder’s assistance (Figure 12).  
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Figure 12  Turning manoeuvre: trajectory at 

0.35ω = ; ship images are only shown for the 
initial and final phases of the simulation 

3.3  Discussion of Results 

As one of the main objectives of the present 
study was to check whether manoeuvring in 
waves is indeed a more dangerous regime than 
the straight run in beam seas, various numerical 
measures of the roll were extracted from the 
simulation outputs. These values are given in 
Table 1 together with the values of the roll 
amplitude obtained by different towing tanks and 
published by ITTC (1983). 

The values of the amplitudes obtained with 
the present code in the constrained-run 
simulations agree well with the values obtained 
by other programs in the same conditions and this 
indicates credibility of further results referring to 
less typical situations.  

It is seen from the table data that both the 
amplitudes and the maximum values are smaller 
in free straight runs than in the constrained runs 
representing the canonical seakeeping situation. 
This is likely due to a relatively short period of 
time when the ship is exposed to the least 
favourable conditions: the beam sea and the 
resonance (or close to resonance) effective 
encounter frequency. However, in 35deg turns 
the situation was different: the maximum reached 
roll angles and even amplitudes were higher than 
in the strictly straight run. This result, however, 
was not unexpected and is explained by the 
combined action of the seakeeping and 
manoeuvring moments. 

Table 1: Numerical Measures of Roll 
Wave frequency, rad/s 

Measure Conditions 0.292 0.35 0.40
3 

constrained 
straight run 5.75 12.5 5.0 

free 
straight run  6.5  

ITTC data 4.5–
6.3 

10.8–
14.6 

3.4–
6.1 

(Maxi- 
mum) 
Roll 
Amplitud
e 

35deg helm 
turn  14.1  

constrained 
straight run 6.0 15.5 4.4 

free 
straight run  8.5  

Maximu
m 
Reached 
Values 
of Roll 
Angle 

35deg helm 
turn  17.2  

These results are considered as primary and 
still no search was made for the situation when 
the synergetic effect will be more pronounced. 
For instance, increase of the approach speed and 
reduction of the metacentric height will by all 
means lead to a much stronger effect of the 
tuning motion in rolling assessments. Using a 
turning manoeuvre instead of the straight run 
could have another advantage: this manoeuvre 
can be effectively executed without any artificial 
constraints, on the one hand but also without any 
automatic controller in the loop whose 
parameters can influence the resulting estimates. 



 

   

4.  CONCLUSIONS 

Primary simulations of the roll motion of a 
displacement ship have been carried out with a 
manoeuvring-and-seakeeping code newly 
developed by the authors. Although these results 
are primary and the chosen simulation conditions 
were not the most characteristics in all the 
respects, certain conclusions can already be 
drawn. These are: 

The roll motion in a turning manoeuvre in 
regular waves is modulated by some low 
frequency corresponding to the completion of the 
ship’s full turn. 

Qualitatively, the same behaviour is observed 
in the so-called free straight runs in waves i.e. 
when the rudder is fixed in the neutral position: 
the ship is in fact turning with some low rate 
approximately in the direction of the propagation 
of the waves. 

The roll amplitudes did not differ much for all 
the three studied manoeuvres (constrained 
straight run, free straight run, turning 
manoeuvre). 

Due to some roll asymmetry caused partly by 
the nonlinearity of the used model, and partly by 
the manoeuvring-originated forces, the attained 
absolute values of the roll angle are greater then 
the amplitude values. 

The largest instantaneous absolute values of 
the roll were observed in the initial phase of the 
turning manoeuvre due to a synergy of the wave 
action and of roll moment due to manoeuvring. 

Tight turns have certain advantages over the 
straight free runs as reference motion for the roll 
analysis with time-domain mathematical models. 
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