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ABSTRACT  

The paper demonstrates the applicability of meshless CFD techniques to model complex free-
surface problems for marine applications. As an illustration the Smoothed Particle Hydrodynamics 
method (SPH) has been used to model the progressive flooding of a damaged ship section. A brief 
description of the numerical method used is given followed by a numerical example. The test case 
used is a simple qualitative case, but nevertheless a case that clearly demonstrates the power of 
meshless techniques when it comes to modelling free-surface flow phenomena with moving 
geometries. 
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1. INTRODUCTION 

The numerical modelling of the flooding 
process of a damaged ship is a complicated 
task. The state-of-the-art of suitable numerical 
tools today consists of potential theory methods 
and Reynolds Averaged Navier-Stokes 
Equations (RANSE) based CFD methods. 
Potential theory methods are computationally 
efficient but lack the ability to model violent 
flows, and it is particularly difficult to 
accurately model water ingress and egress and 
the subsequent sloshing inside flooded 
compartments. Because of this it has long been 
desirable to use CFD tools to model the 
flooding process although this is rarely done 
due to the considerable computational effort 
involved. CFD methods such as the Finite 
Volume Method (FVM) with a Volume of 
Fluid (VOF) treatment of fluid interfaces are 
capable of modelling violent free surface 
effects such as overturning waves. Sloshing 
and flooding can therefore be modelled by this 
approach but there is an issue with numerical 

diffusion of density, and thus smeared 
interfaces, arising from the water-air mixing in 
the grid cells at the free surface. Also, due to its 
mesh based nature it is difficult to allow for 
moving geometries in cases where body forces 
cannot be used to substitute the movement of 
the geometry. A computational method that has 
the capabilities of a VOF method without being 
constrained by a mesh seems, therefore, very 
appealing. 

While such methods exist in many shapes 
and forms one of the most well-known and 
popular meshless methods is Smoothed Particle 
Hydrodynamics (SPH). SPH was originally 
presented in the late 1970’s for astrophysical 
purposes. It is a fully Lagrangian method 
where any fluid or solid medium is represented 
by a number of discrete particles in space. 
From a mathematical point of view these 
particles are simply computational nodes, but 
since they carry their own mass along with all 
other field values they are commonly seen as 
discrete chunks of mass that have their field 
values interpolated smoothly from their 
surrounding neighbours. The particles are 



 

   

unconstrained and free to move wherever the 
force field takes them. Deformation and 
fragmentation of fluids or solids is therefore 
easily dealt with. Because of its high degree of 
flexibility it has been successfully applied in 
fields such as solid dynamics, computer 
graphics and visualisation, geophysical flows 
and biomedical engineering to name a few. It is 
only during the last few years however that it 
has caught interest within naval architecture 
and ocean engineering. That there now is more 
effort being put into research of SPH for 
incompressible free-surface hydrodynamics is 
mainly attributed to the ease of which it can 
simulate violent nonlinear free-surface flows, 
and the realisation that SPH in many ways may 
have its main strengths where the mesh based 
methods have their main weaknesses.  

In this paper the aim is to demonstrate some 
of the capabilities of SPH to model these types 
of problems, illustrated by simulating the 
progressive flooding of a simple two-
dimensional damaged ship section. 

2. SMOOTHED PARTICLE 
HYDRODYNAMICS 

SPH has its basis in interpolation theory, its 
fundamental principle being that any function 
at a particular point in space can be represented 
by weighted interpolation from the function 
value at neighbouring points. An integral 
approximation of the function f(x) can then be 
expressed as 
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In the above expression f(x’) denotes the 
function value at location x’ while W(|x-x’|,h) is 
the weight function, commonly referred to as 
the kernel for short. h denotes the smoothing 
length, which is a measure of the weight 
functions’ reach. The smoothing length is 
representative of a typical length scale in SPH 
and is proportional to the cell size of a mesh-
based method. The smoothing length need not 

be constant but may change in time and space. 

For the expression given in (1) to hold, the 
kernel is required to satisfy at least two 
conditions: 
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These two requirements state that the 
integral of the kernel must be unity and that as 
the smoothing length goes to zero the kernel 
approaches the Dirac delta function. In 
addition, it is preferred that the kernel has 
compact support to limit the size of its support 
domain. 

To find the derivative of the function f(x), 
equation (1) can be differentiated directly: 
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Given that we assume the kernel has 
compact support, the surface integral (the first 
term on the right hand side) vanishes in an 
unbounded domain. This leaves only the 
volumetric part, which means that the 
derivative of any function can be found simply 
by differentiating the kernel analytically. 

In discrete form, the function value of f(x) 
and its gradient at a location a are given by 
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This are the particle approximations of the 
integral approximations given in (1) and (3). 
The summations in these cases are over all 



 

   

particles located inside the kernels’ support  

domain (figure 1). Vb denotes the tributary 
volume of particle b, taken as particle mass 
divided by particle density. The particle mass is 
usually kept constant which ensures exact mass 
conservation. f(xb) denotes the function value at 
particle b. 

 
Figure 1.  Illustration of the principle behind 
SPH. The shape of the kernel function centred 
at particle a is illustrated by the mesh (with a 
cut-out for clarity) while the large circle 
represent the limit of its support domain. 

For standard SPH the kernel function is 
symmetric with an anti-symmetric first 
derivative, and typically takes the form: 
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In the above expression d is the number of 
spatial dimensions and F(s) is a scalar function, 
in most cases Gaussian or spline-based. α is a 
normalisation constant to ensure that the 
condition (2a) is satisfied regardless of 
dimension. The most commonly used weight 
function, which is also the one used in this 
paper, is the cubic spline given by: 
  










<≤−

≤≤+−
=

2s1         ,)2(
4
1

1s0  ,
4
3

2
31

)(
3

32

s

ss
sF  (7)

Using this function in (6), α takes the value 
10/(7π) in two dimensions. 

For the remainder of this paper, the 
following shorthand notation will be used: 
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2.1 Numerical Model 

The governing equations are the 
conservation equations for fluid dynamics, i.e. 
the mass and momentum conservation 
equations: 
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The only difference from the standard set of 
equations is that the momentum equation does 
not contain the convective term since 
convection is calculated directly by moving the 
particles. In this paper fluid is modelled as 
inviscid and only the isotropic part of the stress 
tensor is used.  

Mass Conservation Equation.  To discretise 
the mass conservation equation it is possible to 
use (5) directly, but it is more accurate to use a 
symmetrical expression (Monaghan, 1988). An 
SPH version of (9) can then be taken as 
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The term inside the summation is the SPH 
equivalent of the velocity divergence. The use 
of a symmetrical version like (11) as opposed 
to using (5) directly has the advantage that the 
derivative of a constant function is reproduced 
exactly. The drawback is that while mass is 
intrinsically conserved, the consistency 
between mass, density and volume is not.  



 

   

This can be mitigated by periodically 
reinitialising the density field using a higher 
order interpolation (Colagrossi et. Al., 2003). 

Momentum Equation.  A similar procedure 
to that of the velocity divergence could be 
applied to derive the pressure gradient, but this 
would lead to an expression that would not 
conserve linear and angular momentum 
exactly. In this paper the approach outlined by 
Vila (1999) has been used, leading to the 
following form of the pressure gradient term: 
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Because of the symmetry properties of the 
kernel it is straight forward to show that the use 
of this expression in the momentum equation 
guarantees a local conservation of linear and 
angular momentum in the absence of external 
forces. 

For numerical stability reasons it is also 
necessary to employ a small amount of 
artificial viscosity. In this paper a standard 
formulation following Monaghan (2003) is 
used: 
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In the above expressions vab = va – vb and 
rab = ra – rb, and the subscript av refers to 
averaged quantities taken as fav = 1/2(fa + fb). 
The factor ε << 1 is included to guard against a 
singular expression. The parameter α is 
typically taken between 0.001 and 0.03 for 
incompressible flows;  in this study a value of 
0.01 was used. The use of this artificial 
viscosity in the momentum equation provides 
the necessary damping to the system while 
preserving the momentum conservation 

properties. It should be noted that this type of 
artificial viscosity is inherently one 
dimensional in nature and is therefore too 
dissipative for shear flows. If the flow is shear 
dominated a switch should be introduced to 
reduce the damping in shear (see e.g. Balsara, 
1995). 

Using (12) and (14) the momentum 
equation takes the form: 
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Equation of State. To close the system of 
equations a direct link between density and 
pressure is provided by an equation of state: 
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For the given equation of state, Pa denotes 
the pressure at particle a, ρ0 is the reference 
density of the fluid, cs is the sound speed and γ 
is a stiffness constant taken as 7 for water. The 
use of this equation of state avoids the solution 
of a Poisson equation of pressure and renders 
the algorithm fully explicit. The price that has 
to be paid is that there are always density 
fluctuations present in the flow field and there 
is a dependency on sound speed for the 
maximum allowable time step. To use the real 
speed of sound would result in time steps far 
too small for any practical use and therefore an 
artificial speed of sound is used. This artificial 
speed of sound must be large enough to ensure 
that the maximum density variations are 
sufficiently small to realistically represent 
incompressible flow, while at the same time be 
small enough to allow for practical time steps. 
Since it can be assumed that the density 
fluctuations are proportional to the Mach 
number squared (Monaghan, 1994), a speed of 
sound that is at least 10 times larger than the 
maximum speed of the bulk flow will result in 
density variations of 1% or less. When using 
the Courant (CFL) condition as time step 
control this result in CFL numbers that are 10 



 

   

times larger than for a completely 
incompressible formulation, but as the number 
of particles increases this is more than offset 
against the reduction in computational effort 
per time step. The approach outlined above 
leads to a weakly compressible formulation 
where water is modelled as an artificial fluid 
slightly more compressible than it really is. 

Time Integration.  The mass conservation 
equation and momentum equation can be 
integrated in time by most standard integration 
schemes. In this paper a second order 
predictor-corrector scheme (Monaghan, 1994) 
has been used, but Leap Frog integrators as 
well as 3rd and 4th order Runge Kutta methods 
are also common. To ensure numerical stability 
the following CFL condition has been used to 
limit the time step: 
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The minimum is taken as the minimum 
over all fluid particles. 

Modelling Geometry.  The implementation 
of wall boundaries in SPH is a well-known 
difficulty and still a major challenge. There are 
a variety of methods that can be used, such as 
repulsive boundary forces (Monaghan, 1994, 
2003), ghost particles (Libersky et. Al., 1993) 
and dummy particles (Morris et. Al., 1997). In 
this paper a modified version of the repulsive 
boundary force of Monaghan (1994) has been 
used to model solid bodies. Boundary particles 
are placed along the boundary at an 
approximately equal distance from each other, 
exerting a short-range boundary force normal 
to the boundary. This distance dependent force 
is governed by a Lennard-Jones potential and 
enters the momentum equation directly as an 
external body force. While this approach is not 
as accurate as the use of ghost particles on 
planar shapes, it allows arbitrarily shaped wall 
boundaries to be modelled with ease. 

3. TEST CASE 

To demonstrate the ability of SPH to model 
progressive flooding of a damaged ship, a 
simple two dimensional section of a Ro-Ro 
ship has been chosen as test case (figure 2). 
The beam of the section is 24.0 metres, with a 
draft of 6.5 metres. The ship section has a 
damage opening on the side at the car deck 
level. A vertical opening consistent with the 
presence of a staircase allows for progressive 
flooding to take place from the car deck and all 
the way down to the auxiliary engine room. 

 
Figure 2.  Cross section of the roro ship used as 
a test case. 

In this case to simplify the problem, the 
ship is subjected simultaneously to prescribed 
heave and roll motion. The imposed motion is 
harmonic with untypical heave and roll period 
of 5.0 and 8 seconds respectively. The 
amplitude for heave is taken to be 0.5 metres 
and for roll 9.0 degrees. A train of beamwise 
incoming regular waves of 1.0 metre amplitude 
and with a period of 5.0 seconds is generated 
by a flap type wave maker. In the opposite end 
of the domain a damping zone was established 
to reduce the wave reflection from the domain 
boundary. The damping increased linearly from 
the beginning of the zone towards the domain 
boundary. As the ship is forced to move in 
heave and roll a progressive flooding process 
will take place. This approach is somewhat 
simplified, but removing the ship dynamics 
results in test cases that are well suited for early 
stage verification due to the reduction in the 
number of uncertainties present. While no 
validation is taking place in this case, a set of 
larger three-dimensional cases will be validated 



 

   

against experiments in the near future as part of 
ongoing research. 

3.1 Initial Setup 

The simulation was conducted using a total 
of 90848 particles. The width of the domain 
was set to 5 times the beam and the depth to 5 
times the draft of the ship (figure 3). The ship 
geometry and the domain boundaries were 
modelled as solid walls. 
 

 
Figure 3. Computational domain. 

The initial fluid particle setup was created 
by a standard grid generator. An in-house pre-
processor was used to convert the mesh file 
into a particle setup by placing a particle in the 
geometric centre of each cell and subsequently 
assigning it the volume from that cell. Each 
particle was then given a smoothing length 
defined by  
  

d
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where Va is the particle volume and d denotes 
spatial dimensions. Each particle therefore had 
an individual smoothing length based on its 
size and this smoothing length was kept 
constant during the course of the simulation. 

3.2 Results 

When the ship starts moving from its initial 
upright position water enters the damaged area. 
The incoming wave is small and therefore very 
little water enters at car deck level. Most of the 
water enters in the engine control room and 
progresses into the auxiliary engine room. 
Since the ship motion is prescribed, sinkage 
resulting from the flood water is not captured 

and the sloshing inside the ship can not affect 
the ship dynamics. The sequence of snap shots 
below (figures 4a – 4f) show the flooding 
process in 30 seconds intervals. 

 

 
Figure 4a. Flooding after 30 seconds. 
 
 
 

 
Figure 4b. Flooding after 60 seconds. 
 
 
 

 
Figure 4c. Flooding after 90 seconds. 
 
 
 

 
Figure 4d. Flooding after 120 seconds. 



 

   

 
Figure 4e. Flooding after 150 seconds. 
 
 

 
Figure 4f. Flooding after 180 seconds. 

This simple example shows that SPH can 
handle moving geometries with ease, with 
water being free to flow in and out of the 
damaged area. 

4. DISCUSSION 

In the approach adopted in this paper some 
simplifications were made. While it is fully 
possible to include ship dynamics, this was not 
done in this case. A range of similar cases, but 
in three dimensions, will be run to validate the 
numerical code before it is extended to include 
the full ship dynamics. This allows for a 
validation of forces and moments on the hull as 
well as free-surface elevation internally and 
externally without the added uncertainty from 
the ship dynamics. When satisfactory results 
are achieved, the full ship dynamics will be 
incorporated. The inclusion of ship dynamics 
raises new issues that have to be resolved, in 
particular related to wave generation, wave 
reflection on boundaries and solid body 
dynamics. Accurate wave generation in SPH 
needs more study to resolve issues concerning 
wave reflection from domain boundaries as 
well as issues related to numerical dissipation. 
The wave reflection problem is significant for 

simulations that run over several minutes. To 
reduce the influence from reflected waves, 
numerical beaches are being developed to 
dampen waves approaching the domain 
boundaries. The issue of numerical dissipation 
is more complicated, but it is believed that an 
improved interpolation technique can 
contribute to reduce the numerical damping 
due to a smoother and more accurate flow field. 
SPH is a reproducing particle method in the 
sense that it reproduces existing functions by 
weighted interpolation. Errors in the 
interpolation can therefore be readily 
demonstrated by using SPH to reproduce 
simple analytic functions. These errors give 
rise to some well-known practical problems 
such as tensile instability, sensitivity to particle 
disorder and lack of angular momentum 
conservation when the full stress tensor is used. 
The effect it may possibly have on numerical 
dissipation is currently not known. It should be 
pointed out that in general SPH has been 
shown to be remarkably accurate despite its 
known difficulties, but resolving the 
interpolation issues would contribute to further 
enhancement of the general confidence in the 
methods’ abilities. 

Concerning the implementation of 
boundary conditions, this is still an open issue. 
In particular, wall boundaries are proving 
difficult to implement in a mathematically 
consistent way. The problem is that short of 
solving large linear systems of equations there 
are no proper and consistent implementations 
of wall boundaries for arbitrary geometrical 
shapes. The approach adopted in this paper is 
performing well but it should still be seen as a 
temporary solution that needs to be improved. 
As for most CFD methods, transmissive (non-
reflective) boundaries are also difficult to deal 
with and as mentioned previously, the common 
solution is presently the use of damping zones 
within the domain to dampen waves that 
approach the domain boundary. Nevertheless, 
with the gaining popularity of SPH for free-
surface hydrodynamics applications it is 
expected that progress will be seen in this 
issues in a relative short term. 



 

   

5. CONCLUSION 

A qualitative simulation of the progressive 
flooding of a two-dimensional ship section has 
been presented, illustrating the capability of 
SPH to model this process. While some 
simplifications of the problem were made in 
that the ship was subjected to forced motion, 
the ability to capture the flooding process with 
the subsequent internal sloshing has been 
demonstrated. 
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