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ABSTRACT  

For developing design and operational criteria to be used at the International Maritime 
Organization (IMO), critical conditions for broaching are explored in the light of bifurcation 
analysis. Since surf-riding, which is prerequisite to broaching, can be regarded as a heteroclinic 
bifurcation, one of global bifurcations, of a surge-sway-yaw-roll model in quartering waves, the 
relevant bifurcation condition was mathematically formulated and then a numerical procedure for 
obtaining its solution was presented with successful example. This identified bifurcation condition 
was compared with direct numerical simulation in time domain. As a result, it was confirmed that 
the heteroclinic bifurcation provides a boundary between motions periodically overtaken by waves 
and non-periodic motions such as surf-riding, broaching and so on. Then a local bifurcation analysis 
was applied to the surf-riding equilibria. This results could explain a boundary between stable surf-
riding and oscillatory surf-riding as a Hopf bifurcation. Furthermore, comparison with free-running 
model experiments shows some discrepancies and an improvement with an aid of nonlinearity in 
wave-induced surge force is presented. 
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1. INTRODUCTION 
 

Broaching is one of the three major 
capsizing scenarios that the new performance-
oriented stability criteria to be added to the 
Intact Stability Code at the International 
Maritime Organization (IMO) are requested to 
cover. (Germany, 2005) This is a phenomenon 
that a ship cannot keep a constant course 
despite the maximum steering effort and the 
centrifugal force due to this uncontrollable yaw 
motion could result in capsizing. This 
phenomenon often occurs when a ship runs in 
following and quartering seas with relatively 
high forward speed, especially when a ship is 
surf-ridden. Thus, this phenomenon is relevant 

to ships having their Froude number of 0.3 or 
above, such as destroyers, high-speed RoPax 
ferries, fishing vessels and so on.  

For avoiding this phenomenon, currently 
the guidance to the master for avoiding danger 
in following and quartering seas (MSC/Circ. 
707) provide an operational criterion for 
preventing from surf-riding, which is a 
prerequisite to broaching. This criterion was 
developed with a phase plane analysis of an 
uncoupled surge model in pure following seas.  
(Umeda, 1990) For accurately determining the 
surf-riding threshold, numerical simulation for 
obtaining a global picture of surf-riding should 
be systematically repeated. This is because the 
occurrence of surf-riding can be regarded as a 
heteroclinic bifurcation of a nonlinear 
mathematical model (Umeda, 1999). 



 

   

It is important to reduce such computational 
efforts for developing operational or design 
criterion applicable to individual ships. For this 
purpose, Ananiev (1966) developed an 
approximated analytical method, Spyrou 
(2001) did an exact analytical method of a 
simplified model and Umeda et al. (2004) did a 
geometric method, which can identify the 
heteroclinic bifurcation point with the Newton 
method.  

On the other hand, once broaching occurs, a 
ship has heading angle from wave direction. 
This means coupling with a manoeuvring 
motion in quartering waves is essential. Thus, a 
surge-sway-yaw-roll model is required to 
identify the threshold. For this purpose, the 
geometric method was applied to the 
manoeuvring mathematical model. So far the 
authors had already developed a manoeuvring 
model with linear wave forces and qualitatively 
validated it with model experiments. (Umeda 
& Hashimoto, 2002). The major difficulty 
arises here is the increase of dimensions of 
state vector describing this four degrees-of-
freedom (DOF) model. This requires us to 
upgrade bifurcation analysis in a phase plane to 
that of a vector field. Therefore, the authors 
attempted to develop such a new methodology, 
as briefly introduced by Umeda et al. (2005). In 
this paper, more details are described and the 
numerical example here demonstrates its 
applicability and limitation and then an 
improvement is provided. 

2. MATHEMATICAL MODEL 

The mathematical model used in this paper 
is a manoeuvring model of the surge-sway-
yaw-roll motion developed for prediction of 
broaching associated with surf-riding in 
following and quartering waves. (Umeda, 
1999) In cases of ship runs with higher forward 
velocity in following and quartering waves, the 
encounter frequency becomes much smaller 
than the natural frequencies in heave and pitch. 
Therefore these motions were estimated by 
simply tracing their stable equilibrium.  

 
Figure 1  Cooordinate systems 

As can be seen in Fig.1, two coordinate 
systems are used: (1) a wave fixed with its 
origin at a wave trough, the ξ axis in the 
direction of wave travel; and (2) an upright 
body fixed with its origin at the centre of ship 
gravity, with the x axis pointing toward the 
bow, the y axis to starboard, and the z axis 
downward. The state vector, x , and control 
vector, b , of this system are defined as 
follows: 
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 The dynamical system can be represented 
by the following state equation: 
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Figure 2 Body plan of the subject ship 

 
Table.1 Principal particulars of the ship 

Items Values 
length: LBP 34.5 m 
breadth: B 7.60 m 
depth: D 3.07 m 
draught at FP: df 2.50 m 
mean draught:  dm 2.65 m 
draught  at AP: da 2.80 m 
block coefficient: Cb 0.597 
metacentric height: GM 1.00 m 
pitch radius of gyration: κyy/LBP 0.302 
l.c.b. (aft) 1.31 m 
rudder aspect ratio 1.84 
time constant for steering gear: TE 0.63 s 
rudder gain: KR 1.0 
time constant for differential control: TD 0.0 s 

Based on the above-mentioned 
mathematical model, numerical calculations 
were carried out for a 135GT Japanese purse 
seiner used as a subject ship of the ITTC 
benchmark testing. (Umeda et al., 2001) 
Principal particulars and body plan are shown 
in Table1 and Figure 2, respectively.  
Hydrodynamic coefficients and other relating 

coefficients can be found in the literature. 
(Umeda and Hashimoto., 2002) 

3. HETEROCLINIC BIFURCATION 

A nonlinear dynamical system described by 
Eq. (3) could have fixed points,  

x = (ξ G / λ,u ,v ,χ ,r ,φ , p ,δ )  (12)

where   

F(x : b) = 0  (13)

These fixed points correspond to surf-riding, 
under which a ship runs with a regular wave 
train. F(x;b) is linearised at x 、 putting  
x = x + y  to obtained following equation: 

ybxFy );(D=&  (14)

where   

DF(x :b) =∂ /∂x j fi(x : b)  (15)

If an eigenvalue of DF(x ;b) , λi, which is 
obtained by  

0]);(D[ =− ybxF iλ  (16)

has a positive real part, local asymptotic 
behaviour at x is unstable. 

Hartman’s theorem and the stable manifold 
theorem (Guckenheimer & Holmes, 1983) 
enable us to investigate the local topological 
structure of the system by Eq. (3). That is, there 
exist local stable and unstable maniufolds, 
Wloc

S (x :b)  and Wloc
U (x :b) , tangent to 

eigenspaces, spanned by DF(x ;b) at x.  Then 
the global stable and unstable manifolds WS and 
WU are obtained by letting points in Wloc

S flow 



 

   

backward in time and those in Wloc
U flow 

forward. 

The numerical survey for the system 
described by Eq. (3) applied to the subject ship 
(Umeda, 1999) indicates that there is normally 
one fixed point having only one eigenvalue 
having a positive real part, λ1, if a fixed point 
exists. Thus, such fixed point has a 1-
dimensional unstable invariant manifold and a 
7-dimensional stable invariant manifold. A 
heteroclinic bifurcation requires that WU of a 
fixed point is connected to WS of other fixed 
point. Although calculation of WS is not easy, 
WU is easily calculated as a trajectory, which is 
obtained by numerically integrating Eq. (3) 
from the fixed point with small perturbation, δ1, 
for the direction of eigenvector as follows: 

x(t) = ϕ (t,xα;b)  (17)

where   

[xα − x ]T [xα − x ] = δ
1

2  (18)

Then , if we find b0 satisfying the following 
relationship (Kawakami et al., 1997): 

0])*(D[ 1 =− hT Ib;xF 0 λ  (19)

  

hT[xω *−x *] = 0  (20)

[xω * −x *]T [xω *−x *] −δ2
2 = 0  (21)

  

x * = {(ξ G / λ −1),u ,v ,χ ,r ,φ , p ,δ }  (22)

ϕ(T ,xα ;b0 ) −ϕ (−T,xω*;b0 ) = 0  (23)

  

δ2 <<1  (24)

this is a heteroclinic bifurcation point. 

Figure 3  An example of the heteroclinic 
bifurcation under the wave steepness of 0.05, 
the wave length to ship length ratio of 1.0 and 
the auto pilot course of 5 degrees. 

In this paper, the above equation set was 
numerically solved by the Newton method. A 
numerical example is shown in Figure 3. here 
the wave steepness is 0.05 and the wave length 
to the ship length ratio is 1.0. In this case the 
obtained heteroclinic bifurcation point is the 
nominal Froude number, Fn, of 0.3329 for the 
autopilot course of 5 degrees from the wave 
direction. Below this value the ship is 
overtaken by waves and above this value the 
ship is captured by a wave downslope. 

This method was applied to different auto 
pilot courses and wave conditions and then the 
results are compared with numerical results 
obtained from time series based on sudden 
change concept as shown in Figure 4. Here the 
initial state for the sudden change concept is 
fixed with a periodic state under Fn=0.1 and 
χc=0 degrees and its computational time is 
1000 seconds. The time series were categorised 
into periodic motions, surf-riding, broaching 
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(a) H/λ=0.050，λ/L=1.000 
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(b) H/λ=0.050，λ/L=1.500 
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(c) H/λ=0.040，λ/L=1.500 
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(d) H/λ=0.100，λ/L=1.637 

capsize due to broaching capsize without broaching
broaching without capsize stable surf-riding
periodic motion surf-riding with oscillation
not identified by heteroclinic bifurcation

Figure 4  Numerical simulation and Hetero-clinic bifurcations 

 
 
and capsizing with judging criteria (Umeda & 
Hashimoto, 2002). The heteroclinic bifurcation 
points obtained by the present method 
reasonably well predict the boundary between 
the periodic motions overtaken by waves and 
other motions such as surf-riding at least for 

smaller auto pilot course from the wave 
direction. Therefore, the present method for 
identifying a surf-riding threshold can be used 
as an alternative to time-consuming numerical 
simulation. When the auto pilot course 
increases, the surf-riding threshold also 



 

   

increases. This is comparable to the current 
MSC/Circ. 707. When the wave steepness 
increases, the surf-riding threshold decreases 
because of the increase of wave-induced surge 
force. For the wave steepness is 0.05 or below, 
stable or oscillatory surf-riding occurs above 
the heteroclinic bifurcation points. For much 
larger wave steepness, such as 0.1, broaching 
and/or capsizing occur. This is because 
broaching could occur once surf-riding happens 
under such wave condition. Thus, the 
heteroclinic bifurcation can be used as a 
threshold for broaching. However, it is 
noteworthy that the heteroclic bifurcation does 
not distinguish broaching from surf-riding.  

Although the sudden change concept used 
here for the numerical simulation is designed to 
minimise the initial-value dependence, small 
disagreement between the bifurcation and the 
surf-riding threshold could be explained as the 
initial-value dependence. (Umeda, 1999) In the 
case of larger wave steepness, a heteroclinic 
connection could occur beyond more than one 
wave length in a special case. And periodic 
broaching could occur in the very limited 
region. In addition, the existing range of 
heteroclinic bifurcation may depend on a 
sweeping direction for providing the initial 
value of the Newton method. Thus, these 
should be further investigated in future. 

4. LOCAL BIFURCATION 

To investigate the ship behaviour above the 
heteroclinic bifurcation, local bifurcation 
analysis on fixed points were carried out. Here 
the eigenvalues of locally-linearised system at 
all fixed points were calculated as shown in 
Figures 5-6.  

For smaller wave steepness, the region 
where fixed points exist is slightly larger than 
the region above the heteroclinic bifurcation. 
When the auto pilot course increases, 
eigenvalues having non-zero imaginary part 
appear. This can be regarded as the Hopf 
bifurcation. The numerical simulation also  
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provides the region of oscillatory surf-riding, 
which is almost inside the zone of the fixed 
points whose eigenvalues have non-zero 

Figure 5  Numerical simulation and 
Eigenvalues of fixed points with H/λ=0.040，
λ/L=1.500 

Figure 6  Numerical simulation and 
Eigenvalues of fixed points with H/λ=0.100，
λ/L=1.637 



 

   

imaginary parts. This suggests that the Hopf 
bifurcation results in limit cycle around 
unstable surf-riding. This phenomenon was 
discussed by Spyrou (1995). 

For larger wave steepness, the region that 
fixed points exist is enlarged to cover all 
explored region. In the region of stable surf-
riding, which is identified with the numerical 
simulation, fixed points whose eigenvalues 
have no positive real parts can be found so that 
stable surf-riding can exist. Regarding 
capsizing due to broaching or capsizing 
without broaching, a fixed point of which a 
eigenvalue have a positive real part can be 
found for each operational condition but it is 
not sufficient to distinguish these phenomena. 
In general, the local bifurcation analysis can 
provide prerequisite for dangerous phenomena 
but can identify their sufficient conditions. This 
is because a trajectory does not always 
approach to fixed points.  

5. COMPARISON WITH EXPERIMENT 
AND IMPROVEMENT 

So far the prediction of heteroclinic 
bifurcation was successfully validated with 
numerical simulation. As a next step, the 
calculated heteroclinic bifurcation was 
compared with existing free-running model 
experiments for the subject ship (Umeda et al., 
1999) In the experiment periodic motions, 
stable surf-riding, broaching and capsizing 
were observed. The comparisons are shown in 
Figure 7. Here the heteroclinic bifurcation (A) 
indicates that from the above mentioned 
method, and overestimates danger. The 
measured periodic motions overtaken by waves 
can be found even above the heteroclinic 
bifurcation (A). It can be presumed that this is 
because the accuracy of mathematical modelling 
of the motions is insufficient. After proposing the 
mathematical model described in Eq. (3), the 
authors  have  continued  their effort to improve it  
by utilising captive model tests and hydrodynamic 
modelling. As a result, Hashimoto et al. (2004B) 
proposed  an  improved  mathematical  model  for  

 exp.(capsize due to broaching)
exp.(capsize without broaching)
exp.(broaching without capsize)
exp.(near stable surf-riding)
exp.(periodic motion)
heteroclinic bifurcation(A)
heteroclinic bifurcation(B)
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Figure 7  Comparison between the calculated 
heteroclinic bifurcation and free-running model 
experiment. Here the heteroclic bifurcations 
(A) and (B) are based on Eq. (3) and an 
improved mathematical model, respectively. 

quantitatively predicting broaching. The crucial 
factors are nonlinear hull manoeuvring 
forces,wave effect on linear manoeuvring forces, 
wave effect on rudder forces, wave effect on 
restoring moment, wave effect on propeller thrust, 
nonlinearity of wave-induced surge force, 
nonlinear coupling effect between sway and roll, 
heel-dependent nonlinear hydrodynamic forces in 
calm water. Among them, nonlinearity of wave-
induced surge force is identified as the main 
cause of discrepancy in surf-riding threshold, 
which can be obtained from a captive model 
test in following waves. (Hashimoto et al., 
2004A) Therefore, in this paper, these 
experimental data were incorporated into the 
mathematical model and then the above 
mentioned technique for estimating 
heteroclinic bifurcation was applied. The 
calculated results are also plotted in Figure 7 as 
the heteroclinic bifurcation (B). This new 
results improves agreement between the 



 

   

experiment and calculation significantly. 
Because of nonlinear relationship between the 
wave-induced surge force and wave steepness, 
the wave-induced surge force becomes smaller 
than that from a linear theory. As a result, the 
nominal speed of heteroclinic bifurcation 
increases. Thus, it is also important to utilise 
accurate but still practical hydrodynamic 
modelling for correctly estimate broaching and 
capsizing. The authors (Hashimoto and Umeda, 
2005) proposed a mathematical model as an 
candidate. It is desirable to incorporate it into 
the global bifurcation analysis, and is a future 
task. 

6. CONCLUSIONS 

This paper presents a numerical method for 
estimating the heteroclinic bifurcation of the 
surge-sway-yaw-roll model in quartering 
waves, which can be regarded as a threshold 
for surf-riding and/or broaching. Numerical 
examples are reasonably well compared with 
numerical simulation from some initial value 
sets. Hydrodynamic modelling in wave-
induced surge force was improved with a 
captive model test data so that sufficient 
agreement with the free-running model 
experiments was realised. In addition, the 
existence of the Hopf bifurcation, which could 
result in oscillatory surf-riding, was confirmed 
with the bifurcation analysis on fixed points.  
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9. NOMENCLATURE 
 
c  wave celerity 

nF  nominal Froude number 
g  gravitational acceleration 
GZ   righting arm 
H  wave height 

xxI  moment of inertia in roll 
zzI  moment of inertia in yaw 
xxJ  added moment of inertia in roll 
zzJ  added moment of inertia in yaw 
pK  derivative of roll moment with respect 

to roll rate 
rK  derivative of roll moment with respect 

to yaw rate 
RK  rudder gain 
TK  thrust coefficient of propeller 
vK  derivative of roll moment with respect 

to sway velocity 
wK  wave-induced roll moment 

Kδ  derivative of roll moment with respect 
to rudder angle 

Kφ  derivative of roll moment with respect 
to roll angle 

L   ship length between perpendiculars 
m  ship mass 

xm  added mass in surge 
ym  added mass in sway 

n   propeller revolution number 
rN   derivative of yaw moment with 

respect to yaw rate 
vN  derivative of yaw moment with 

respect to sway velocity 
wN   wave-induced yaw rate 

Nδ   derivative of yaw moment with 
respect to rudder angle 

Nφ   derivative of yaw moment with 
respect to roll angle 

p  roll rate 
r   yaw rate 
R   ship resistance 
t   time 
T   propeller thrust 



 

   

DT   time constant for differential control 
ET   time constant for steering gear 

u   surge velocity 
v   sway velocity 

wX   wave-induced surge force 
rY   derivative of sway force with respect 

to yaw rate 
vY   derivative of sway force with respect 

to sway velocity 
wY   wave-induced sway force 

Yδ   derivative of sway force with respect 
to rudder angle 

Yφ   derivative of sway force with respect 
to roll angle 

Hz   vertical position of centre of sway 
force due to lateral motions 

δ   rudder angle 
λ   wave length 

Gξ   longitudinal position of centre 
of gravity 

φ   roll angle 
χ   heading angle from wave direction 

cχ   desired heading angle for auto pilot 

 


