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ABSTRACT  

In the last decade, Smoothed Particle Hydrodynamics (SPH) method has been paid an 
increasing attention, especially when simulating liquid motions. In this article, the method is applied 
to passive stabilizer tanks for vessels. Highly non linear motion of the free surface can happen in 
these tanks, including breaking waves and wave impacts on the walls. The advantage of SPH is that 
it can deal more efficiently with such phenomena than the methods using a grid. In Souto et al. 
(2004), both numerical and experimental investigation on passive stabilizer tanks were presented. 
Results were promising, resonance phenomena were reproduced, but further investigations were 
needed, especially on the pressure field near the walls that is a critical point when designing those 
tanks, or containers. 

In this article, a new experimental setup for roll motion for a fishing vessel tank geometry is 
described in detail. A torsiometer measures the moment with respect to the rolling axis and the 
phase lag is calculated with respect to the angle signal. Amplitude and phase lag of the moment are 
presented for a wide range of oscillation frequencies, including the first sloshing frequency of the 
tank and the resonance roll frequency of the ship. 

Experimental and numerical results are compared. Numerically, the SPH method is presented 
with an emphasis on the solid boundary treatment. Efficiency of the boundary simulation is 
discussed. 
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1. INTRODUCTION 

The presence of free surface tanks in a 
marine structures generates wave loads that 
affect its behaviour and becomes an important 
issue when designing those structures. The goal 
can be to reduce the loads caused by the water 
in the tank, as it is the case for LNG vessels 
(Tveitnes et al., 2004),  or to get an appropriate 

counter balance moment in the case of the 
design of passive anti-roll tanks (Bass, 1998). 
Highly non linear phenomena in the tanks, 
known as sloshing phenomena, play a 
dominant role and need a specific study. 

The sloshing problem has been studied over 
the last fifty years following different 
approaches. Linear potential flow (Graham & 
Rodriguez, 1952) and non linear one based on a 
modal decomposition of the free surface 



 

   

(Faltinsen et al., 2005) have been used. These 
techniques provide fast results but do not allow 
the modelling of phenomena as overturning 
waves or shallow water tanks. In the last 20 
years, numerical methods have been applied to 
sloshing, solving the Navier-Stokes equations 
by means of finite difference scheme 
(Frandsen, 2004),  VOF method (Sames, 2002), 
or Smoothed Particle Hydrodynamics (Landrini 
et al., 2003). SPH is an interesting alternative 
method to traditional grid-based methods since 
its Lagrangian character allows  the simulation 
of high deformations of the free  surface 
including overturning waves. 

This article presents experimental results 
for the case of a passive stabilizer tank. The 
new experimental device is first described. The 
moment created by the water over the rolling 
axis is measured and the analysis is done on its 
first harmonic (corresponding to the tank 
motion).  

Those results are compared with SPH 
simulations. SPH formulation is presented  
with an emphasis on the boundary treatment. 
Both moment and free surface shapes are 
compared for a wide range of excitation 
frequencies of the tank. 

2. EXPERIMENTAL SETUP 

The experimental device consists of a high 
precision torsiometer with a 200 Nm range, a 
structure that holds the tank, and an electrical 
engine that produces a harmonic rolling motion 
on the tank. 

 
Figure 1   Experimental data obtained for each 

excitation frequency. Units of the vertical axis 
are degrees for the angle curve and N.m for the 
moment curves 

The moment and angle signal are 
registered, filtered and processed (figure 1) and 
the amplitude and phase lag of the filtered 
moment represents the data that is to be 
compared with the numerical simulation. 
Filtering the moment data by extracting its 
most important harmonic is the standard 
procedure employed when using experimental 
data for projecting and tuning the anti-roll 
systems. We will proceed in the same way 
when performing the analysis of the numerical 
results. 

 
Figure 2   Geometry of the tank 

The geometry of the tank is shown in figure 
2. It is a rectangular tank with a breadth B = 
64cm and a height of 14cm. All the results are 
given for a width of 25.2cm.  The rotation axis 
is 10cm below its baseline. The maximum 
rotation angle is 6 degrees.  

The water depth h used in this study is 3cm, 
which means that h/B = 0.047, and hence the 
case is a shallow water one. The corresponding 
first resonance frequency can be obtained from 
the linear wave theory. In this case, its value is 

srad /65.20 =ω . The frequency range used 
goes from 0.24 to 8.21 rad/s, with a step of 
0.26 rad/s. The graph of the amplitude of the 
filtered experimental moment for this range of 
frequencies is shown in figure 3.  The first 
resonance frequency almost corresponds to the 
maximum value of the amplitude, as it should 
be in these circumstances. 

In figure 3, we can notice dramatic 
variations in the curve shape depending on the 
frequency, mainly between points A and B, 



 

   

corresponding to sradA /34.4=ω  and 
sradB /87.4=ω . When the frequency of the 

movement is so high that the wave can not 
follow the movement, the moment amplitude 
falls dramatically. This transition happens 
between points A and B. We can observe this 
effect by the shape of the free surface for both 
cases in figure 4. In picture A the wave 
develops completely and clashes with the tank 
top. In picture B, the wave travelling to the 
right clashes with another one going to the left 
and thus breaks before reaching the end of the 
tank. 
 

 
Figure 3   Experimental values of the moment 
amplitude (N.m) for the test case, as a function 
of the excitation frequency (rad/s). The solid 
round marker corresponds to the closest point 
to the first resonance frequency. Points A and B 
refer to figure 4 
 

 
Figure 4   Pictures A and B correspond to 
points A and B in figure 3 

3. SPH FORMULATION OF THE 
PROBLEM 

3.1 SPH Formalism 

Smoothed particle hydrodynamics (SPH) is 

a method for obtaining approximate numerical 
solutions of the equations of fluid dynamics by 
replacing the fluid by a set of particles. In SPH, 
the formulation is Lagrangian, allowing to deal 
with the equations of the problem without the 
convective terms. No free-surface condition is 
needed in SPH because the particles implicitly 
define the free-surface position. On the other 
hand, an additional term is needed in the 
momentum equation to guarantee solid 
boundary conditions. This is one of the critical 
point of SPH. A very good review paper has 
been recently published by Monaghan, 
(Monaghan, 2005), complementing a previous 
one by the same author (Monaghan, 1992). 

( ) Ω⋅−= ∫Ω dhW ,)()( r'rr'frf  (1)

in which Ω is the fluid domain. In the integral 
(1) the function W is called the kernel. The 
kernel depends on the distance between 
particles and on a distance h called the 
smoothing length, indicating the range of 
influence of a particle. A cubic spline kernel 
(Monaghan, 2005) has been used in the 2D 
simulations presented in this article. 

Assuming the function f(r) to be known at 
a discrete set of N spatial points, indexed by i 
and j, the equation (1) can be approximated by: 

( ) ( ) ( ) j

N

j
ijji VhW ⋅≈∑

=1

,rrfrf
 

(2)

where Vj represents the volume (or surface in 
two dimensions) associated to the point rj and 
rij = | ri - rj |. If the point ri represents a particle 
of mass mj and density ρj, its volume is Vj = mj 
/ ρj . 

The gradient of any vector function f(r) is 
obtained by integrating by parts equation (1) 
neglecting the surface integral and discretizing 
on the set of particles, giving: 
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3.2 Application to Incompressible Fluids 

The SPH formalism is applied to the Navier 
Stokes equations in order to simulate fluid 
motions. The continuity equation becomes 
(Monaghan, 2005): 

( ) ( )∑ ∇−=
j

ijijij
i hWm

dt
d ,rvvρ

 
(4)

One should note that the density of a 
particle could be obtained by directly applying 
equation (2) to the density. Nevertheless, this 
expression gives a vanishing density field near 
the free-surface. 

There are different ways to apply the SPH 
formalism to the momentum equation of an 
inviscid fluid. The simplest way to guarantee 
momentum conservation is making the 
interaction between two particles symmetric. 
Following Monaghan, 1994, an additional 
symmetric term ijπ  is introduced in the 
momentum equation to model the dissipation 
due to viscous forces and to stabilize the 
numerical method, equivalent to the artificial 
viscosity term that dampens spurious 
oscillations in finite difference schemes. The 
momentum equation written for a generic 
particle i is: 
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Different forms of the viscous term ijπ  
have been proposed. We will use the one of 
Monaghan (Gray, 2001). 

 (6)

 (7)

where ijρ  is the average density of particles i 
and j. vij represents the velocity difference 
between particles i and j and cs is the numerical 
sound speed. α  is a viscosity parameter. η  is a 
parameter included to avoid singularity when 
the particles get very close. Results presented 
here were obtained with 201.0 h=η  and 
α =0.02. 

Impose incompressibility directly can be 
done by solving a Poisson equation for the 
pressure. Nevertheless, its high cost and the 
necessity to define explicitly the free surface in 
order to apply boundary condition on it make 
that a common practise in SPH is to consider 
the fluid as compressible and assume a stiff 
equation of State. For a particle i   :  

 
(8)

where 0ρ  is the reference density and γ  is 
taken as 7 (Batchelor, 1967).  

The relative density variation in the fluid is 
proportional to the square of the Mach number 
(Monaghan, 1994). Nevertheless, the sound 
speed influences the time steps used in the time 
integration through the Courant condition. 
Hence, a common practise is to choose the 
sound speed such that the density variation is  
not bigger than 1%, because smaller density 
variations would induce much shorter time 
steps. 

3.3 Solid Boundary Treatment  

In SPH the free surface is defined implicitly 
by the position of the particles. Hence no free 
surface boundary condition is required. 
Nevertheless, this becomes problematic when 
dealing with solid boundaries. Since no fluid 
particle is located on the boundary, it is 
difficult to impose free-slip/no slip condition 
on them.  
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A first possibility to treat the solid 
boundary is to consider that a particle getting 
closer to a wall suffers an inelastic bounce 
loosing a part of its kinetic energy. This 
techniques lacks precision and introduce 
distortion in the flow. 

In the last 5 years, some authors have used 
ghost particles (Colagrossi et al., 2003), formed 
by reflecting the fluid particles on the other 
side of the boundaries. These ghost particles 
are defined with the same density, same 
pressure and opposite velocity of the reflected 
particles. These ghost particles are then taken 
into account in the equations (4) and (5) and act 
as a repulsive boundary force. This way of 
proceeding is more intuitive and works quite 
well. Nevertheless, it becomes very difficult to 
implement when the geometry is complex.  

Alternatively, boundary particles can be 
placed on the walls, exerting a repulsive force 
on the fluid particles (Monaghan & Kos, 1999). 
This repulsive force enters in the momentum 
equation (5) and had initially the form of a 
Lennard-Jones force, due to the analogy 
between SPH with molecular dynamics. 

SPH results presented in this article are 
obtained with boundary particles placed on the 
wall exerting on the fluid a force derived from 
the gradient of the kernel (Gray, 2001), but  
instead of the gradient of the kernel we used : 

 

(9)

Where hru /⊥= , h  is the smoothing 
length, ⊥r  is the perpendicular distance 
between the particle and the solid boundary, 

and f  is proportional to the square of the 
sound speed. Our proportionality constant is 
0.01, i.e., 201.0 scf = . 

Figure 5 shows the function Fb(r) and the 
gradient of the kernel used in the simulations. 
The value of Fb(r) between r=0 and where the 
gradient reaches its maximum value has been 
changed to a constant. This makes that the final 
boundary force does not tend to 0 when ⊥r  
tends to 0, avoiding penetration of the 
boundary. 

To ensure that a particle moving parallel to 
a boundary suffers a constant force from the set 
of boundary particles, the boundary force 
magnitude bF  is multiplied by an interpolation 
function P , depending on the tangential 
distance //r  between the fluid particle and the 
boundary particle. The final boundary force we 
use has the following form (Gray, 2001).  

(10)

 
Figure 5   Gradient of the kernel and function 
Fb(r) in the boundary force. Units of the 
vertical axis are m-3 for the gradient of the 
kernel and N for the function f(r). 

where n  is the normal vector of the boundary 
oriented towards the fluid domain. The 
interpolation function takes the following form: 
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with p∆   the separation between two 
consecutive boundary particles. 
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3.4 Moment over the rolling axis 

In order to calculate the global moment 
exerted by the fluid over the rolling axis, the 
value of the pressure can be interpolated and 
integrated over the tank walls. Nevertheless, 
the interpolated values lack of precision and we 
used the boundary particles to calculate the 
global moment. If af  is the forced exerted by a 
boundary particle a, the sum of af  over all the 
boundary particle is the force of the tank on the 
fluid to maintain it, i.e. the opposite of the 
force exerted by the fluid on the tank. As a 
consequence, the moment 1M  created by the 
fluid over the rolling axis  is : 

aa
BPa

M rf ∧−= ∑
∈

1
 

(12)

As experimentally done, once a temporal 
evolution of 1M  is obtained, a Fourier analysis 
is done for each excitation frequency in order 
to obtain the component of the moment of the 
same frequency as the excitation one.  
Amplitude and phase lag of this moment with 
respect to the motion of the tank will be 
compared. 

3.5 Time Integration Scheme 

A leap frog predictor-corrector scheme is 
used in the simulations. The positions of the 
particles are calculated with an explicit second 
order scheme and both velocity and density are 
predicted and afterwards corrected (Gray, 
2001). 

The time step is defined by the minimum 
result obtained from three different criteria 
related with a Courant stability condition: 

Gravity time step:  

Viscous time step: 

Boundary particle forces time step:  

                }01.0/min{5.0 2
3 s

crt ⊥=∆  

The last time step condition is usually the 
most restrictive one. With 2500 fluid particles 
and 500 boundary particles, the average time 
step is 1 e-4 with a sound speed of 25 m/s. 
CPU time (Pentium 3GHz) is about half an 
hour for 1 second of simulation time. 

4. VALIDATION OF SPH RESULTS 

4.1 Phase Lags 

In the case of a stabilizer tank, the most 
important data relative to the water motion in 
the tank is the phase lag between the moment 
created by the water over the rolling axis and 
the motion of the tank. A 90 degrees phase lag 
means that the moment created by the liquid  
acts in opposition to the motion and that the 
tank gets a maximum stabilizing effect. The 
goal of the design of stabilizer tanks is that this 
90 degrees phase lag is reached at the roll 
natural resonance frequency of the ship. 

Figure 6 presents the phase lag curve for 
the test case presented in section 2 in which a 
wide range of frequencies, including the roll 
natural frequency of the ship, is studied. 

Figure 6   Experimental vs SPH simulation 
phase lag curves 

The similarity between the numerical and 
experimental values is very good for the 
frequencies close to the first natural frequency 
of the flow motion srad /65.20 =ω . There is a 
lack of accuracy for the highest frequencies 
where the motion starts to become chaotic and 

ght /5.01 =∆

)2(/22 α+=∆ scht



 

   

the amplitude of the experimental data is 
smaller, a fact that always affects accuracy.  

4.2 Moment Amplitudes 

The magnitude of the moment exerted by 
the water on the tank is necessary to quantify 
the effects of the stabilizer tank on the ship. 

The comparison of experimental and 
simulation values of the moment amplitude for 
the test case is shown in figure 7. The 
agreement is good for most of the points, 
except for frequencies just below 4 rad/s. These 
points need further research. We present a 
comparison with the results of Verhagen 1963, 
that are meant to be accurate for the region 
close to the first resonance frequency.  

It is very interesting to notice that the 
simulation reproduces all the changes in the 
tendencies of the experimental data, including 
the dramatic fall of moment amplitude for 

5.4≈ω  described earlier. It is also interesting 
to notice that for the highest frequencies, the 
method keeps the error within a narrow gap, 
although the phase lags are not so accurate in 
this part of the curve, as we have already 
commented above. 

 
Figure 7   Experimental vs SPH simulation 
moment amplitude curves 

4.3 Phase Diagrams 

Figure 8 shows the phase diagram which is 
aimed at simultaneously comparing moment 

amplitude and moment phase lag. The 
horizontal component of every point is 
obtained by projecting the moment amplitude 
with the cosine of the phase lag. Hence, the 
horizontal component is the part of the 
response that follows the motion. The vertical 
component is obtained by projecting the 
moment amplitude with the sine of the phase 
lag. Hence, it is the part of the response that 
counteracts the motion. Both have to be 
analyzed when designing a passive stabilizer 
tank. The agreement is very good for most of 
the points but errors cannot be neglected when 
the phase lag is around 90º. This phase lag 
corresponds to frequencies just below 4 rad/s, 
where the errors in the momentum amplitude 
are bigger.     

 
Figure 8   Experimental vs SPH simulation 
moment phase diagrams 

4.4 Free Surface Shape 

Although it has no quantitative character,  it 
is very interesting to compare experimental and 
numerical free surface shapes in order to check 
whether the general dynamics of the flow 
correspond to the experimental ones. The 
images from the numerical calculation are 
obtained by placing scaled velocity vectors at 
the position of the particles.  

Figures 9 and 10 show free surface at 
rolling angle º0=α  for excitation frequencies 

srad /34.4=ω  and srad /87.4=ω  (points A 
and B on figure 3). There is a clear lack of 
resolution regarding the splash and breaking 
but the general dynamic is very well 



 

   

reproduced, thus justifying the accuracy of the 
global result regarding phase lag and moment. 

At frequency  srad /34.4=ω , the lag is 
around 90 degrees (figure 6) and the main 
wave in the tank is in opposition of phase with 
respect to the tank motion (see figures 9 & 11). 
As a result the wave impacts periodically on 
the tank walls.  

On the other hand, when the excitation 
frequency is much higher (point B for instance) 
than the resonance one, the main wave in the 
tank does not travel fast enough to impact on 
the walls and a smoother behaviour is 
observed. It confirms the reduction of the 
moment amplitude after resonance (figure 7).  
 

 
Figure 9   srad /34.4=ω , º0=α  
 

 
Figure 10   srad /87.4=ω , º0=α  

Figures 11 and 12 present the same 
excitation frequency for the maximum roll 
angle º6=α . Splash-up phenomenon is not 
well reproduced because of the lack of 
resolution. To have a better idea of the 
phenomenon, experimental videos, numerical 
ones, and superposition of both are available at  
http://canal.etsin.upm.es/papers/stab06. 

 

 
Figure 11   srad /34.4=ω  º6=α  

 

 
Figure 12   srad /87.4=ω  º6=α  

5. CONCLUSIONS AND FUTURE 
WORKS 

Sloshing in shallow water tank has been 
tested experimentally and reproduced 
numerically with SPH. The comparison of 
phase lags and moment amplitudes shows that 
the simulations reproduce very well this highly 
non linear phenomenon. Nevertheless, further 
work has to be done to improve the capacities 
of the simulation.  

From an engineering point of view, local 
loads on the walls are of great interest. Thus, 
experimental and numerical values of pressure 
must thus be obtained and compared. Pressure 
is obtained in SPH from density with a very 
stiff equation of state and consequently small 
errors in density become very amplified and 
tend to occur when particles are close to the 
boundaries. Although some results for local 
pressure values in sloshing type problems with 
SPH have already been published (Landrini et 
al., 2003), they are far from being satisfactory. 
Research is needed in this field, focused on the 
solid boundary treatment with SPH.   

Dissipation is a also a critical point of the 
method. A viscous term was included in the 
discretized momentum equation with the 
purpose of increasing the stability properties of 
the numerical algorithm. For long term 
simulations it is not clear how the value of this 
term affects the evolution. In addition, although 
it can be very important for medium-high 
frequencies, we do not consider the physical 
dissipation due to turbulence when the 
overturning waves splash and break. Therefore, 



 

   

a better dissipation model is required that 
incorporates a turbulence model. 

Finally, an uncertainty analysis of the 
experiments for the anti-roll tanks is needed. 
The sources of errors are diverse and a deep 
analysis is required to individualize and assess 
the extent of the errors produced by each 
source. The outcome of this analysis would be 
the establishment of an error uncertainty value 
for every experimental point. 
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