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ABSTRACT 

In this paper the authors present a methodology to detect instabilities leading to capsize in real-
time. Specifically, variations in finite-time Lyapunov exponent (FTLE) time series are identified 
from experimental data. As shown in prior work, FTLEs have potential, both numerically and 
experimentally, to indicate the onset of chaotic behavior leading to capsize through detection of 
idiosyncrasies in the FTLE time series.  The principle objective of this work is to identify 
instabilities from experimental data without dependence upon time-consuming numerical 
simulation. A demonstration of the concept is given through application to experimental data for a 
notional destroyer model (DTMB model 5514).  
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1. INTRODUCTION 

Large amplitude vessel motions and capsize 
have served as hazards of the maritime 
community for centuries.  Therefore, it is of 
benefit to all sectors of the marine industry to 
develop tools which could provide mariners 
with indicators of the onset of inclement ship 
motions. Establishing a tool to aid vessel 
operators in identifying the onset of threatening 
ship motion conditions would allow time for 
changes to be made, thus altering the 
commanded response to environmental 
conditions and possibly reducing exposure to 
devastating ship motions or capsize. For large 
amplitude ship motions and capsize, small 
variations in wave and/or position initial 
conditions can result in largely varying end 
behavior.  Finite-time Lyapunov exponents 
(FTLEs) measure convergence or divergence of 
nearby trajectories thus providing a quantitative 
measure of a system's sensitivity to initial 
conditions and an indication of long-term 
behavior for a chaotic system.  FTLEs are 

feasible for use as a predictive tool to provide 
early warnings for vessel instabilities, or 
motions leading to capsize. 

For a system of equations written in state-
space form ( )=x u x& , small deviations from the 
fiducial trajectory can be expressed by the 
equation ( / )i i j jx u x xδ δ= ∂ ∂&  (Eckhardt & Yao, 
1993).  δx  is a vector representing the 
deviation from the trajectory with components 
for each state variable of the system.  From 
this, the equation for the finite-time Lyapunov 
exponent can be written as Equation 1 
(Eckhardt & Yao, 1993). 

( )1( ( ), (0)) log
( )T

t T
t

T t
δ

λ δ
δ

+
=

x
x x

x  
(1)

Positive FTLEs indicate exponential 
divergence of a nearby trajectories and 
conversely, negative FTLEs indicate 
exponential convergence.  That is, if one were 
to envision an infinitesimal ball of points 
surrounding an initial point along the fiducial 
trajectory, FTLEs measure whether that ball 
stretches into an ellipsoid, contracts to a point, 



 
 

   

or remains a ball over small increments in time.  
If any one principal axis of the ball grows at an 
exponential rate over a time increment, there 
will be a positive FTLE for this time 
increment. (Or, in the asymptotic sense, if as 
time approaches infinity one finds exponential 
growth, there is at least one positive Lyapunov 
exponent.) 

Methods for computing Lyapunov 
exponents and FTLEs from equations of 
motion are well developed in references such 
as Benettin et al. (1980), Wolf et al. (1985), 
and Eckhardt & Yao (1993).  In this work, 
FTLEs from experimental time series are 
calculated based on a modified version of the 
algorithm developed for Lyapunov exponents 
by Sano & Sawada (1985)1. While Lyapunov 
exponents have been used to demonstrate 
chaotic behavior for numerous naval 
architecture applications such as Papoulias 
(1987), Falzarano (1990), Spyrou (1996), 
Murashige and collaborators (1998a; 1998b; 
2000), Arnold et al. (2003), McCue & Troesch 
(2004; 2005) and McCue, Belknap, & 
Campbell (2005), it is only recently that FTLEs 
have been exploited for the purposes of 
anticipating ship motions.  See, for example, 
works by McCue & Bassler (2005), McCue 
(2005), McCue & Troesch (2006), and McCue 
& Bulian (2006). 

A demonstration of the concept is given 
through application to experimental data for a 
notional destroyer model (DTMB model 5514).  
Over 100 experimental runs were conducted in 
regular waves to examine the capsize behavior 
of the 1/46.6th scale model (full-scale ship 
length is 142.04 m).  Run conditions were at 
nominal Froude numbers from 0.1 to 0.4, wave 
length to ship length (λ/L) of 0.75 to 1.5, wave 
height to wave length (H/λ) of 1/10 to 1/20, 
and ship headings ranging from following to 
stern-quartering to beam seas.  The term 
‘nominal’ is used with respect to Froude 
number because the propeller shafts are given a 

                                                 
1 The Sano and Sawada algorithm is quite similar to that 
proposed by Eckmann et al. (1986). 

commanded voltage corresponding to an 
equivalent calm water speed, rather than 
prescribing speed specifically.  Further 
discussion is provided in Section 2 on model 
test details. This paper focuses upon 37 capsize 
and non-capsize tests in stern-quartering seas, 
that is, 45 degrees off the stern, identified as a 
dangerous heading. FTLE methods are applied 
to model 5514 experimental data analyzed in a 
variety of wave conditions to illustrate the 
generality of the method. 

2. MODEL TEST DETAILS 

The model 5514 regular wave dynamic 
stability test was performed in the 
Maneuvering and Seakeeping Basin at the 
Carderock Division of the Naval Surface 
Warfare Center in November, 2004.  Figure 1 
shows model 5514 during a dynamic stability 
run in regular waves.  The model was radio 
controlled, self-propelled, and free in all 6 
degrees of freedom.  A PID controller autopilot 
was used to maintain the desired heading, 
while the motor powering the two propeller 
shafts was given a constant voltage equal to the 
voltage needed to achieve the desired model 
speed in calm water.  Because the model is 
self-propelled with an autopilot, forward speed 
and heading do oscillate with wave interaction 
over the course of an experimental run (McCue 
et al., 2005).  For the model runs analyzed in 
this study, the KG was set such that the calm 
water range of positive stability was 
approximately 70 degrees. Instruments 
measured roll, roll rate, pitch, pitch rate, 
heading, yaw rate, and ship-referenced 
accelerations at several points.  The initial 
conditions of the simulation were not 
controlled, but rather the model was 
accelerated out of the corner of the basin into 
the wave field at essentially random points 
relative to the wave phase.  The initial heading 
was nominally the desired heading. 
 



 
 

   

 
Figure 1: DTMB Model 5514 in regular seas. 

3. METHODOLOGY 

As in prior Stability Workshop papers 
(McCue & Troesch, 2004; McCue et al., 2005), 
the basis for the algorithm used to calculate 
Lyapunov exponents is that detailed in Sano & 
Sawada (1985).  Tangent space methods for 
Lyapunov exponent calculations were 
developed simultaneously by the separate 
research teams of Sano & Sawada (1985) and 
Eckmann and coauthors (1985; 1986).  This 
approach allows for calculation of the full 
spectrum of Lyapunov exponents through local 
predictions of the Jacobian along the time 
series trajectory.  For example, for a given 
trajectory ( )tx  defined by Equation 2, the 
tangent vector ξ  is given by the linearized 
form of Equation 2 presented in Equation 3 
where J  is the Jacobian matrix of f , 

/= ∂ ∂J f x  (Sano & Sawada, 1985).  Sano & 
Sawada (1985) solve Equation 3 through a 
least squares estimate of the time dependent 
linear operator jA  which approximates the map 
from (0)ξ  to ( )tξ .   

The Lyapunov exponents are then 
computed using Equation 4 where τ  is a flow 
scale time increment, n  is the number of data 
points, and e  is an orthonormal basis 
maintained using a Gram-Schmidt 
renormalization process (Sano & Sawada, 
1985).  For details of this process refer to Sano 
& Sawada (1985) or the similar works of 
Eckmann et al. (1985; 1986).  
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To overcome the difficulties associated 
with the brevity of the DTMB Model 5514 
experimental data, time series for all runs 
conducted at the same target heading were 
treated as containing possible neighbors for all 
other time series at that heading.  For the case 
of stern-quartering seas, rather than solely 
searching the single recorded time history of 
interest for neighboring points with which to 
approximate the Jacobian of the system, all 
model runs released in stern quartering seas 
were searched for neighboring points for each 
instant of interest in the analyzed time history.  
In order to demonstrate the generality of this 
method, all wave conditions were grouped for 
each given heading, that is to say, in searching 
for neighboring points it is deemed just as 
acceptable to search time series with differing 
wave heights and lengths and forward speeds 
because they yield as much information as to 
the ship's mechanism of response as those runs 
with identical wave conditions. In addition, this 
allows for added realism as typical seaways 
contain a spectrum of wave heights and 
frequencies and any method to detect 
instabilities must be capable of identifying 
stability trends in varying sea conditions. 

Additionally, in this work, roll, pitch, roll 
rate, and pitch rate time series were used rather 
than embedding single variate roll time series 
data as done previously for Lyapunov exponent 
calculations (McCue et al., 2005). Since multi-
variate data was readily available, this 
approach was taken to potentially improve the 
accuracy of the algorithm and remove the 
limitations inherent in embedding.  This 
approach restricts the dimensionality of the 
system to 4, and therefore it is possible that 
higher order information about the attractor is 
lost. However, it is hoped that with four 
variables, the primary attractor dynamics are 
captured.  Increasing the dimensionality of the 
system would run the risk of spurious 



 
 

   

exponents, increased computation times, and/or 
numerical inaccuracies. Only rotational state 
variables (and their associated derivatives) 
were chosen to avoid dimensionality concerns 
associated with mixing displacements and 
rotations. 

Table 1 compares values for the first 
Lyapunov exponent calculated using the 
previous, more simplistic approach, embedding 
univariate roll time history data into 5 
dimensions and using the individual time series 
data to calculate Lyapunov exponents (Method 
1), to the modified approach detailed above 
(Method 2)2. For each analyzed run under 
Method 2, 37 separate time histories were 
scanned for ‘neighbors’ to each state space 
vector in time for the analyzed run.  

 For example, when calculating the 
Lyapunov exponent for Run 400, at each 
instant in time in Run 400, neighbors are 
selected from 36 additional time histories for 
the model in stern quartering seas, in addition 
to searching Run 400 for neighbors.  As can be 
seen in Table 1 the agreement between the two 
methods is good given the time series length 
limit constraints. 
 
Table 1: Table of largest Lyapunov exponents 
comparing model-scale results from embedded 
approach with d=5 (McCue et al., 2005) to 
non-embedded approach. All cases non-
capsize. 

3 Experimental 
Data 

 Method 
1, d=5 

Method 2 

Run 
# 

H/λ λ/L Lyap. 
Exp. (1/s) 

Lyap. 
Exp. (1/s) 

400 0.0518 1.498 0.2066 0.2712 
239 0.0679 0.998 0.2020 0.1929 
313 0.0671 1.248 0.1270 0.3392 
312 0.0681 1.246 0.7464 0.5146 
418 0.0971 0.773 1.0724 0.6131 
417 0.0999 0.750 0.7401 0.4293 
281 0.1020 1.002 0.6341 0.4157 
329 0.1003 1.252 0.6005 0.7922 

                                                 
2 Note, all results in this paper are presented model scale.  
To reconcile the values given for Method 1 with those 
published in McCue, Belknap, and Campbell (2005), 
scale by ( / ) 1/ 46.6M SL L = . 

4. FINITE-TIME LYAPUNOV 
EXPONENTS 

Finite-time Lyapunov exponents are 
calculated using the same approach discussed 
previously for Lyapunov exponents in which 
all similar time series are treated as potential 
sources of neighbors for each analyzed run and 
time series consist of roll, pitch, roll rate and 
pitch rate data.   

A simple flow chart detailing the steps in 
the computation of FTLEs is presented in 
Figure 2.  Unlike the asymptotic Lyapunov 
exponent which is averaged over the entire 
length of the time series, finite-time Lyapunov 
exponents are calculated over short intervals of 
time, reference Equation 1. Algorithmically, 
anytime that insufficient neighbors were found 
with which to approximate the Jacobian of the 
system, the number -1000 was stored as a flag 
for the FTLE time series. 
 

 
Figure 2: Flowchart for calculation of FTLEs. 

Figures 3 and 4 show roll time histories, 
FTLE time histories, and roll/roll velocity 
phase space for similar capsize and non-capsize 
runs.  In the capsize run, the point at which the 
trajectory leaves the stable attractor, as 
determined by examination of the phase 



 
 

   

portrait, is marked with an ‘x’ on the phase 
space plot and vertical lines on the roll and 
FTLE time series.  

 For the non-capsize case run 329, large 
variations in the FTLE time series are observed 
at the onset and during large amplitude rolling.  
As apparent in the phase portrait, while roll 
conditions in excess of 70 degrees are 
encountered leading to complicated 
trajectories, capsize does not occur.  

Conversely, Run 331 encounters much 
smaller roll motions until the oscillation 
immediately preceding that leading to capsize.  
In this case as well, large variations in the 
FTLE time series and/or the flag of a lack of 
appropriate neighbors is detected in advance of 
the trajectory's deviation from limit-cycle 
behavior.

 

 
Figure 3: No Capsize Run 329: H/λ=1/9.972, λ/L=1.252, Fn=0.40 released in stern quartering seas. 
 

 
Figure 4: Capsize Run 331: H/λ=1/9.48, λ/L=1.228, Fn=0.40 released in stern quartering 
seas. 
 

In an effort to tabulate quantifiable 
indicators of capsize.  The FTLE time series for 
each run was scanned to identify if a critical 
value was exceeded, chosen as 20 1/s in order 
to be roughly twice the max FTLE1 found in 
typical cases for these experiments, and/or if 
there were periods for which insufficient 
neighbors were found flagged in the FTLE 

time series with the value -1000, i.e. behavior 
not regularly detected in any other time series.  
Those runs in which FTLE1 exceeds the critical 
value and/or has periods with insufficient 
neighbors are then marked as potential dangers.  
Table 2 gives a summary of the analyzed runs 
including their run number, whether or not they 
were flagged for hazardous behavior, and 
whether or not the vessel ultimately capsized 
during that run. 



 
 

   

 
Table 2: Summary of 37 DTMB hull 5514 experimental runs indicating capsize/non-capsize and if 
hazardous periods were identified using FTLE analysis. 

Run# H/λ λ/L Fn Hazard Capsized Run# H/λ λ/L Fn Hazard Capsized 
212 0.092 0.748 0.20 No No Capsize 312 0.068 1.246 0.40 Flag No Capsize
213 0.091 0.750 0.20 No No Capsize 313 0.067 1.248 0.40 Flag No Capsize
214 0.092 0.753 0.30 No No Capsize 323 0.096 1.244 0.10 No No Capsize
215 0.099 0.755 0.30 No No Capsize 324 0.100 1.245 0.20 No No Capsize
216 0.103 0.747 0.40 Flag Capsize 325 0.100 1.247 0.30 Flag No Capsize
220 0.094 0.752 0.40 Flag Capsize 326 0.106 1.254 0.30 No No Capsize
237 0.068 0.995 0.30 No No Capsize 327 0.101 1.234 0.40 Flag Capsize 
238 0.069 1.000 0.30 No No Capsize 329 0.100 1.252 0.40 Flag No Capsize
239 0.068 0.998 0.40 No No Capsize 331 0.105 1.228 0.40 Flag Capsize 
240 0.070 1.000 0.40 No No Capsize 333 0.101 1.254 0.40 Flag Capsize 
276 0.106 0.998 0.20 No No Capsize 399 0.055 1.486 0.30 No No Capsize
277 0.102 0.998 0.20 No No Capsize 400 0.052 1.498 0.40 No No Capsize
278 0.103 0.993 0.30 No No Capsize 404 0.069 1.504 0.20 No No Capsize
280 0.101 0.996 0.40 No No Capsize 405 0.068 1.496 0.30 No No Capsize
281 0.102 1.002 0.40 No No Capsize 406 0.068 1.494 0.40 No No Capsize
305 0.055 1.250 0.30 No No Capsize 415 0.100 0.754 0.40 Flag No Capsize
307 0.052 1.252 0.30 No No Capsize 417 0.100 0.750 0.40 No No Capsize
309 0.067 1.242 0.20 No No Capsize 418 0.097 0.773 0.40 Flag No Capsize
311 0.070 1.256 0.30 No No Capsize       

 
Table 2 shows that runs leading to capsize are 
consistently flagged by searching for FTLE 
values in excess of a critical value and/or when 
behavior is sufficiently anomalous in 
comparison to other data that insufficient 
neighbors are found.  However, this method 
also appears overly conservative issuing 
warnings for non-capsizing runs.  Figure 5 
gives time histories of roll and FTLE1 for runs 
which are flagged yet do not lead to capsize.  It 
is apparent that the triggering aspects of the 
FTLE1 time series occur near very large 
amplitude motions or even immediately after 
large motions for cases where roll motion 
rapidly decreases, as in Run 329, as a 
particularly striking example.  Of primary note 

in this figure is that many of these “false 
positives” occur in runs which are dangerously 
close to capsize, therefore, providing an 
operator warning would be prudent for safe 
operations.  

Figure 6 presents the time histories of roll 
and FTLE1 for those runs leading to capsize, all 
of which were flagged using this FTLE 
approach.  In Run 327 the flag trigger occurs 
essentially simultaneously with the catastrophic 
loss of stability.  However, for each of the other 
four cases, triggers occur prior to capsize, at 
times even multiple cycles prior to the capsize 
event. 

 



 
 

   

 
Figure 5: Roll and FTLE1 time series of those runs flagged not leading to capsize.  The flag trigger 
is denoted with a solid horizontal red line, that is, the run is flagged if either the solid green FTLE1 
time series exceeds the solid red horizontal line or if there are insufficient neighbors with which to 
estimate the Jacobian thus causing the FTLE time series to default to a value of -1000, indicated on 
the figure by those times when FTLE1 exceeds the negative ‘y’-ordinate limit of the figure. 

 
 

Figure 6: Roll and FTLE1 time series of those runs flagged and leading to capsize.  The flag trigger 
is denoted with a solid horizontal red line, that is, the run is flagged if either the solid green FTLE1 
time series exceeds the solid red horizontal line or if there are insufficient neighbors with which to 
estimate the Jacobian thus causing the FTLE time series to default to a value of -1000, indicated on 
the figure by those times when FTLE1 exceeds the negative ‘y’-ordinate limit of the figure. 



 
 

   

 
Figure 7: Roll and FTLE1 time series for Run 276 

As shown previously (McCue, 2005; 
McCue & Troesch, 2006; McCue & Bulian, 
2006), qualitative changes in the FTLE time 
series behavior were also noted corresponding 
to changes in the magnitude of ship motions.  
For Run 276, a non-capsize, non-flagged case 
presented in Figure 7, it is apparent that the 
qualitative behavior, i.e. the regularity of the 
FTLE time series varies as roll motions 
increase or decrease.  Quantifying this 
qualitative behavior could assist in reducing the 
number of false warnings and potentially 
indicate changes to yet more subtle behavior, 
such as the inverse problem of capsize, that is 
detecting quiescence for safe at sea launch and 
recovery operations. 

5. CONCLUSIONS 

In this work, the authors demonstrate the 
feasibility of using FTLEs to detect chaotic 
behavior leading to large amplitude motions 
and/or capsize as applied to experimental tests 

conducted in the Maneuvering and Seakeeping 
Basin at the Carderock Division of the Naval 
Surface Warfare Center for DTMB Hull 5514. 
Large fluctuations in the FTLE time series 
and/or flagging due to insufficient neighbors 
with which to estimate the Jacobian of the 
system preceded and coincided with large 
amplitude motions particularly those leading to 
capsize. 

Future work will include testing this 
method using simulation-based time histories 
in random seas. This will allow iteration and 
optimization of the chosen variables, such as 
incorporation of yaw.  Also, simulated data can 
provide sufficiently long time histories to allow 
tests of highly specified scope, e.g. limiting the 
number of conditions included in the search for 
neighboring points such as only looking at 
conditions with the same heading and speed 
and or/conditions with slowly varying heading, 
speed, and sea states in an effort to emulate 
realistic operating conditions. 



 
 

   

To be useful in an onboard sense the 
calculation algorithms could easily be modified 
to search the recent past history of data for the 
ship as it is operating in any given sea state.  
As available time series grow longer, e.g. if 
this approach were to be used onboard a ship 
for some relatively long time period by 
comparison to the length of the experimental 
data sets, the accuracy of this method is 
anticipated to only improve with the precision 
of the Jacobian estimation.  Further study is 
warranted to quantify qualitative behavior 
observed in the FTLE time series, identify 
appropriate bounds for flagging from the FTLE 
time series, and to ensure warnings are issued 
in sufficient time for corrective measures so as 
to enable use of this methodology on-board, in 
real time as a stand-alone package or as a 
companion to an intelligent systems or other 
dynamic motion monitoring approach. 
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