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ABSTRACT

In the present work new equations are derived governing the joint, response-excitation,
probability density function fyu«y (@1,a,.b) of roll motion x(t), roll velocity x(t) and excitation

y(t), for a ship sailing in a seaway, without any simplifying assumptions concerning the correlation

and probabilistic structure of the excitation. Both external excitation, due to wind and waves, and
parametric excitation, due to varying restoring coefficient, are considered. The derivation of new
equations is based on Hopf’s characteristic functional approach. These equations are compared
(after taking the marginal with respect to the excitation) with the corresponding classical Fokker-
Planck-Kolmogorov equations obtained under the assumption of delta-correlated excitation.
Techniques for the numerical solution of the new equations are under development and will be

presented in the near future.

Keywords: Ship roll motion; stochastic modeling of non-linear dynamical systems; stochastic excitation; stochastic parametric
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1. INTRODUCTION

Wave and wind loads on ships and
structures in the sea are very successfully
modelled as stochastic processes. Wave loads
on ships can be considered as Gaussian or
nearly Gaussian, smoothly-correlated, stocha-
stic processes. Wind velocity and wind loads,
also important for roll motion, can be con-
sidered as superposition of a steady mean and
two randomly fluctuating components; one
modelling the background turbulent wind flow,
which is nearly stationary and nearly Gaussian
with a broad-band spectrum (Simiu and
Scanlan 1986, Ch. 14; Belenky and Seva-
stianov 2003, Sec. 8.2.1), and a second one,
modelling squalls, which should be considered
non-stationary and non-Gaussian (see, e.g.,

Belenky and Sevastianov 2003, Sec. 8.2.2,
Michelacci 1983). Concerning ship motion
responses, the determination of their probabi-
listic characteristics is straightforward as far as
the assumption of linearity is (approximately)
valid, and the excitation can be simplified as
Gaussian. See, e.g., Price and Bishop (1974).
When strong nonlinearities are present, and/or
the exaction cannot be considered Gaussian, as
in the case of roll motion, probabilistic
characterization of the response is a difficult
problem, calling for specific modelling techni-
ques and advanced mathematical tools.

The rolling motion is perhaps the degree of
freedom of ship dynamics attracted the most
attention. This is perfectly justified since roll
motion is easily excited in the sea, most
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pronounced, highly nonlinear and most
dangerous; see, e.g., Belenky and Sevastianov
(2003). The complicacies of the dynamics of
roll motion are due partly to the nonlinearities
in the restoring moment term and the damping
term, and partly to the excitation mechanisms,
which include external excitation by waves and
wind, as well as parametric excitation. The
latter is usually expressed by means of one or
more time-varying (stochastic) coefficient(s),
multiplying roll motion or roll velocity. The
origin of parametric excitation is attributed
either to heave-roll/pitch-roll nonlinear inter-
actions (see, e.g. Oh, Nayfeh and Mook 2000,
Neves and Rodriquez 2007, and references
cited there), or/and to surge-roll nonlinear
interaction (Spyrou 2000), or to a quasi-static
variation of the GZ curve as the ship is sailing
in waves (Belenky and Sevastianov 2003,
Bulian 2005).

Although the investigation of nonlinear roll
response under harmonic wave excitation
(external or parametric) is an indispensable tool
for the understanding of ship dynamics (see,
e.g., Belenky and Sevastianov 2003, Bulian
2005, and the survey by Spyrou 2005), we
should not forget that a ship operates in the sea
and is subjected to real-world wave and wind
excitation. In this paper we focus on the latter
situation, aiming at the derivation of an
appropriate probabilistic reformulation of the
roll problem for ships sailing under the
influence of irregular external or parametric
excitation. The theory to be developed will
cover the general case of any smoothly-
correlated stochastic excitation, stationary or
non-stationary, Gaussian or non-Gaussian.

One of the best ways to study the realistic
roll response in the sea is to formulate (and
solve) an equation governing the evolution of
the joint probability density function (pdf)(*) of
roll motion and roll velocity. Early attempts in
this direction, made by Haddara (1974, 1983),
Haddara and Zhang (1994), Muhuri (1980),
and others, were based on the assumption that

(*) All abbreviations used are listed in Appendix A.

the excitation (external or parametric) could be
considered as a Gaussian, white-noise (delta-
correlated) process. Under this assumption the
roll response becomes a Markov (diffusion)
process, and the arsenal of It6 calculus and Itd
SDEs is available. Thus, it is possible to derive
a FPK equation, describing the evolution of the
joint pdf of roll motion and roll velocity.

As has been already mentioned, the
assumption of Gaussian, delta-correlated exci-
tation is rather unrealistic for a ship sailing in
the sea, under the combined effect of wind and
waves. In fact, the model of a delta-correlated
excitation can be applied only when the
correlation time of the real excitation is much
smaller than the relaxation time of the system
responses (see, e.g. Lin 1986, Roberts and
Spanos 1986), which is not the case for the ship
roll problem.

In many cases, but not always, it is possible
to overcome this difficulty by using a specific
technique, known as the stochastic averaging
method. This method was first introduced in
early sixties (Stratonovitch 1963) and made
rigorous, under clearly stated assumptions, in
1966 by Khasminkii. The main feature of the
method is to find a characteristic quantity of
the oscillation, e.g. the amplitude of the
response envelope or the total energy of the
system, which varies much slower than the
fluctuation of the stochastic excitation. Then,
this slowly varying quantity can be considered
as a Markov process, satisfying an Itd6 SDE.
The last step of this approach consists of the
calculation of the coefficients of the 1t6 SDE in
terms of the dynamical parameters of the
system and the correlation structure of the
initial stochastic excitation. Among the very
extensive relevant literature, we refer to the
works by Ibrahim (1985), Roberts and Spanos
(1986), Red-Horse and Spanos (1992), Lin an
Cai (2000). See also Cai and Lin (2001), where
the stochastic averaging method is compared to
other methods and some of its limitations are
pointed out. Variants of this methodology
applied to ship rolling problem as early as 1973
(Haddara 1973, 1980, Roberts 1982). An
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advantage of the method is that the slowly
varying amplitude turns to be uncoupled with
the phase processes, resulting to an easily
solvable, 1+1(time) dimensional FPK equation.
Furthermore, through a consideration of the
related phase processes, it is possible to obtain
an approximate expression for the joint
(stationary) pdf of roll motion and roll velocity;
see, e.g., Roberts & Dacunha (1985), Roberts
(1986). The method is thoroughly re-examined
in Roberts and Vasta (2000), where also an
extensive survey of the previous works is
presented. Further elaboration of the stochastic
averaging method for the study of large ship
roll responses in head irregular seas has been
presented by Kreuzer and Sichermann (2007).

Another way to model satisfactorily the
wave excitation due to a realistic Gaussian sea,
while keeping a close connection with the
standard mathematical techniques of 1t6 SDEs
and FPK equation, is by augmenting the
dynamical equations with a linear filter, excited
by a delta-correlated process and providing as
output a process modelling the realistic
excitation. Filter description of wave field and
wave excitation have been developed by
Spanos (1983, 1986), and other authors, and
have been applied to the model-ling and
analysis of ship roll motion by Francescutto
and Naito (2004) and others. The method is
rather general and effective as far as the
excitation is Gaus-sian. A disadvantage of this
method is that the dimensionality of the
augmented system (initial dynamical system
plus the filter) becomes high, making very
difficult the numerical solu-tion of the
corresponding FPK equation. For example, the
augmented system for the roll motion obtained
by Francescutto and Naito (2004) has 6 degrees
of freedom and, thus, the corresponding FPK
equation has 6+1 (time) independent variables.
Nevertheless, this formulation can be used for
the systematic derivation of moment equations,
providing valuable information about roll
dynamics.

Apart from the above techniques for
modelling the problem of the probabilistic

response of a stochastically excited dynamical
system, another possibility has been recently
pointed out by Athanassoulis and Sapsis
(2006). It is based on a generic approach
introduced in 1952 by Eberhard Hopf, which
treats the evolution of the underlying, infinite-
dimensional, probability measure, associated
with the involved processes, by means of the
evolution of their joint characteristic functional
(Ch.Fnl). The very demanding mathematical
apparatus of this method is the price to be paid
for the ability to treat any kind of stochastic
processes (especially, non-Gaussian, smoothly-
correlated ones). The Ch.Fnl approach has been
extensively used in the statistical modelling
and analysis of turbulent flows (see, e.g., Lewis
& Kraichnan 1962, Beran 1968, Vishik and
Fursikov 1988). The application of this
approach to treat stochastically excited ODEs
was discussed by Beran (1968), Ch.3. Little
progress, however, has been reported in this
direction, since most authors tend to avoid the
use of the, somewhat obscure, concepts from
infinite-dimensional calculus like Ch.Fnl. and
FDEs. A notable exception is the work of
Kotulski and Sobczyk (1984), who presented a
closed form solution for the Ch.Fnl of a
stochastically excited linear oscillator and other
linear problems. In the present paper, the
Ch.Fnl approach is exploited along the lines
introduced by Sapsis and Athanassoulis (2008),
in order to obtain new PDEs governing the
evolution of the joint, response-excitation, ch.f
and pdf of roll response (motion and velocity)
and excitation (either external or parametric).
Thus, the functional calculus and FDEs part of
the analysis is used only for discovering the
new PDEs which, although more complicated
than the usual FPK equation, seem to be
amenable to numerical treatment. Techniques
for numerical solution of these equations are
under development by the same authors and
they will be presented in the near future.
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2. THE FUNDAMENTAL DYNAMICS
OF SHIP ROLL MOTION

Roll motion is one of the six, in general
fully coupled, degrees of freedom of the freely
floating ship. Various complicacies of the
system (non-linearities, memory effects ect.)
call for simplified dynamical models, in order
to make feasible an in-depth analytical
investigation of the problem. Our analysis will
be based on the following simplified,
archetypal equation of roll motion, already
extensively used in the literature (see, e.g.,
Belenky and Sevastianov 2003):

(I+A4)i(e)+b,x(r)+b,x (1)+ M
(K, % ()x(0)+ K, 2 (1) = (),

where 7+ 4 is the total moment of inertia of
the rolling ship, b, and b, are damping coeffi-
cients, K, and K, are hydrostatic coefficients,
Y,(¢) is the external stochastic excitation, due
to the combined action of wind and waves, and
¥,(¢) is the parametric stochastic excitation,
due to the variation of the righting arm GZ
and/or to the nonlinear couplings, as discussed
in the Introduction. More general model equa-
tions, including higher-order non-linear terms
and additional parametric excitation terms can
also be treated using the present method.

To apply our approach to eq. (1) it is expe-
dient to rewrite it in the state-space format.
Denoting x(¢) by x,(¢) and x(¢) by x,(r), eq.
(1) takes the form of the following system:

x (1) =x, (1), (2a)

x,(8) = b"x (1) +5x] (1) + b)x, (1) +b)x; () +
+63" x, (1), (50) + 6"y, (£6),  (2b)

where b\"=-K /I + A4),b"=-K, /(I +4),

B =-b (I +A4), bP=-b,I(I+A4), b," ==1/1+A),

BU" =1/ + 4).

3. THE CHARACTERISTIC FUNCTI-
ONAL APPROACH

The Ch.Fnl introduced in probability theory
by A.N. Kolmogorov in 1935 and exploited for
the first time for studying real-world problems

by Hopf (1952), in connection with the
description of turbulent flows. A complete
mathematical description of background
concepts can be found in Vakhania et al
(1987).

3.1. A Heuristic Introduction to the
Characteristic Functional

Before entering into the formal derivation
of the new equations using Ch.Fnl, we shall
give a heuristic motivation for that concept. If
R;(,l)._,x(,h.)(da, ...da“,) = ﬁ{h)-‘-"(fa.-)dal ...dﬂﬂN (3)
is the N -order probability measure of the
process x(t), the corresponding ch.f is defined
by the equation

g91’(;| VXt ) (H b St u N ) =

fcxx:{ (w0, + ot uyay )} P (da

w

R

where Pr,).xqy)(da,...da,) is the probability
that the random vector (x(t,).--x(t,)) belongs to
the N —dimensional interval [a,o, +da)x..
xay,ay +da,) at the given set of N time
instants ¢,,...,,,. Now, following the concept of
passing from the discrete to continuous,
introduced by V. Volterra in 1887 (see, also,
Volterra 1930/1959/2005), we consider that
N—-oo and ¢, —t,, —0, so that 7.’s tend to
become densely distributed in an interval, say
[¢,,T], and the sum @, +..+u,a, is replaced
by the integral f u(t)a(t)dt . The limiting form
of the ch.f, eq. (4) is the Ch.Fnl of the process
x(t), t €[t,,T], denoted by % (u). Intensive
mathematical research of the last four decades
has established that Ch.Fnl is well defined as a
new kind of integral over infinite-dimensional
spaces, retaining most of the essential
properties of the usual integral (Vakhania ef al
1987, Egorov ef al 1993). Based on the above
discussion we can write the following heuristic
representation for % (u):

F(u)= f cxp{f u(.r]a(r)d.r} (da). (5)
Rl .

In the above equation, u(¢) ,(r) and do = do(t)

are functions defined on the whole interval

[t,,T], R"" denotes the set of functions

da,) (4)
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a:[t,,T]— R, and 92 (da) is the probability
that a sample function x(:), t €[f,,T], lies in the
“strip” between o(r) and oa(f)+da(r), for all
t€[t,,T]. Thus, the exterior integration in eq.
(5) is considered over all functions «(r) from
the sample space of the process. We shall
denote the sample (function) space by %" and
will assume that %" is either C([¢,,T]), the
space of all continuous functions defined on
[4,,T], or C'([t,,T]), the space of differentiable

functions defined on [t,,7]. From the mathe-

matical point of view an even more general
choice is technically preferable: u(-) will be
considered as a generalized function (conti-
nuous functional) over the sample-function
space .% . The space of all continuous functi-
onals over % (the topological dual of %)
will be denoted by %2¢. On the basis of the
above discussion, the integral appearing in the
argument of the exponential in eq. (5) is
replaced by the symbol (duality pairing)
<u,o>, which denotes the evaluation of the
continuous functional u against the function
«. After these explanations we can introduce
the following, formal, definition of the Ch.Fnl

of a stochastic process x(), t €[t,,T]:

%(u)=fexp{i<u,a>}@(da). (6)
x

In treating the stochastic response of dynamical
system (2), we have to consider the state
response process (x; (1), x, (1)), as well as of the
joint, response-excitation, process (x, (¢), x, (),
» (@), y, (1)) . Thus, we have to consider the joint
Ch.Fnl % x,,,, (4, u,,v,,v,), abbreviated to
-V(H.,uz,‘v,,‘vl), and defined by

.7(1«,,:;2,1;,,02):

ff ff ""P{"(‘f".,a. >4 <u,o, >+

Fx Ty U
+<v,,8, > +<v,,8, >)}P(da,da,dB dB,). (7)

In the above equation 9 (da,de,dBdp,)=
P 2y, (dada,dB dp,) is the joint probability
measure for the vector process (x,(7),x,(?),
» @0y, 0), 1 €[1,,T], % and %, are the

sample-function spaces for the processes x,(7)
and x,(¢), respectively, both assumed to be
C'([t,,T]), whereas % and %, are the sample-
function spaces for the external and parametric
excitation processes y,(), y,(t), respectively,
both taken as C([¢,,7]). To avoid lengthy and
cumbersome mathematical expressions we
shall restrict ourselves to the cases:

- y,()=0, y,(n) =0 (external excitation), and

- »,()=0, y,() =0 (parametric excitation).

Then, denoting the non-zero excitation as y(r),

we shall work with the the joint, response-
excitation Ch.Fnl.

y(u‘,uz,v)=fffcxp{---}:5’]’(daldazd,6) (8)
where

exp{eee} = exp{i({ u, o >+<u,o,>+<vp >)}
The general case (=0, y,()=0 can be
treated in a similar way.

4. HOPF’S FUNCTIONAL
DIFFERENTIAL EQUATION

Following the methodology of Hopf (1952)
(see also Beran 1968), we shall first derive
FDEs for the joint Ch.Fnl. % (u,,u,,v). For
this purpose use will be made of appropriate
functional derivatives. (See Appendix B for
relevant definitions and formulae.) Applying
formula (45), Appendix B, with A, =06,(:),
the Dirac delta functional supported at 7, we
obtain

5"I.¥- =fffal(!}-exp{---}?];(dadﬁ), 9
6, F =[[ie,(yew{~}7,(dadp),  (10)
6§, F =ffi,6(r)-exp{---} P (dadB), (11)

where da = da,da, . Differentiating now with
respect to time, and assuming that time deriva-
tive d()/dt can pass under the (functional)
integral sign, we obtain:

éia,ly=ffc‘el(r)'exp{---}g’:,(dadﬁ)- (12)

1d
-——b6 F = i : w1l P (dadB). 13
6,7 =[[ 6200w (-}, (dadp).  (13)
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In a similar manner, applying formulae (47),
Appendix B, we get:

= 807 = [[ @) ew{-} 7, (dadp), (14)
L 807 = [[ a1y {-} 7, (daaB)  (15)

Combining now the differential system (2) with
y,(t)=0 and y (1) = y(r), with the functional
derivatives (9)-(15), we obtain:
145 7 15 7 =
id ! i 2

= ff(al (- ai(f])exp{"-} # (dadp)=0 (16)
and
L2, 7 Lp0s, 7 - Loos? 7

. i

id ? i

1 1 3) (3) 1 (1)
s, 7280 0 - Lb0s, 7 -

= [[ (6,00 =50, ()- b (1) - 0,0

—b(;’\a; (r)—bg;"ﬁ(r)) x exp{~} Z, (dadB)=0.(17)
The system (16), (17) is supplemented by the
marginal-compatibility condition:
.9?(0,0,1))E%,xzy(0,0,0)=%(v) (18)
Also, appropriate initial conditions are needed,
to ensure that the initial state x,,(6), n=1,2, is
probabilistically given and independent of the
excitation y(¢). To this end we set #, =#,d, (),
i, €R, n=1,2, where J, ()€ 2 is the Dirac
delta functional supported at ¢, and, invoking

the projection theorem (see Sapsis and Atha-
nassoulis 2008), we obtain:

y(ﬁﬁw (')’§=5*u(')’0) = %5 om0 (ﬁl'ﬁz)’ (19)

where  @x )x,00(#,,4,) is the (known) joint
ch.f. of the initial state (x,(6),x,,(6)).

5. EVOLUTION EQUATION FOR THE
JOINT, RESPONSE-EXCITATION,
pdf UNDER GENERAL EXTERNAL
EXCITATION

In order to take an equation for the joint,
response-excitation,ch.f we proceed as follows:
Consider (#,,,)€ R, and take the linear com-

bination of the left-hand sides of equations
(16), (17), multiplied by i, , i, respectively:

gl ls o -l5 & +£§1[li§ F
idt ! i ? i dt

Y1

~Lyos, 7 - Lo 7 -Lovs, F
i I ! i 2

‘.]
-1 a7 -Lips, 7| =0, o
1 1
In the arguments of % =% (u, u,v) Wwe
make the substitution «, = 4,6,(), u, = @,6,(),

v=06,(), #,,4,, V€ R, where t,s are two

arbitrary time instants (later on we shall take
t — s). Then, for the linear combination of the
time derivatives we have:

1d 1d
it = —0, F +iii,—~—0, F ||y —isr =
[ dt ! id P
L Uy =iiy6;()
v =060

= [[ (6,0 +it,6,0)exw (-} 7, (dardB) =
2]t i

[invoking once again the projection theorem]

0
T o f f“p{“'} P escosis) (de der,dB) =
R R
a ~ .
- Eq’xl(r)xzuw(s)(“1*”2’”)’ 1)
where:
exp{...}=.~:x;:|{:'(§,c:ut +i,a, +6,6)}‘ (22)

The remaining terms appearing in equation
(20) can also be transformed in a similar way
and reduced to their finite-dimensional counter-
parts:

1
28, |u s = [ axOexp{-} %, (dcraB)
! Uy =1,6()
v =080
1 8
= f fe"p{"'}ﬂlmx;u)m) (d“ud“fzdﬁ) =
iou,
R R
1 &
- i O @xl(’}"z(f)y{s)’ (23)
2
where
e 0099 = Px0x,09) (0,11,,9).
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® 1 ¢° af,
LOOF i) = 5 (24) O R ANOINOY0)
=#6,0) =3 nn > +3b, o, f, + «
P ";fg%ér(() j Bu: x,(1)%,(0)¥(s5) 2 St x (0)x,(0¥(1) 2 30&1
l J B afﬁ(')"zmy(-') 5¥a aLﬂ-’)’zU)?(”
_6 y “Izl‘lb!’() S (91. (I)x “)y(&_}, (25) + | O‘fi o + 1 al Ba
i Uy =iy6,() iou, "7 B 2
v =U8;()
* [0} aj;i(')"z(‘)y(f) @, 3 3}2:(')"2(1”(‘)
1 1 a + b, e, + by, )
s it (8 (83
I_guy w =380 = 755 Pnmore” (26) 2 :
lh_ R;ﬁf(} Bj‘x I
I v =08,() - (2?) +b:;”ﬂ 1 az ( =) (3 1a)
e : 2
i =ad() T 3 i3 . . .
37 ulz=§:§:;;((i) i oity " HOOYE) The above equation will be abbreviated as
v =

Equations (20)-(27) are valid for any f,s5€
[£,,T]. Taking the limit s —# and substituting

the limiting forms of eq. (21)-(27) to eq. (20),
we get the following equation for the joint,
response-excitation, ch.f.:

a o O
2 Pomere| Mg Paomon
8 b”) 83
m e K-
[b o, 27 umevo T o Pu oy
+b(l] a Q’ b(?.” 63

B, MOBOX0) "',7353 Pr x00)

a
(-.1)
b 52 ‘px(:)xz(r)y(r)] 0 9

Since the marginal ch.f. related to the exci-
tation is known, the following compatibility
condition should hold true:

P %,036) (0 0,8 ) Pys) (f’l) =

= known ch.f., V¥s 21, (29)

Furthermore, making the plausible assumption
that the initial state is independent from the
excitation, the initial condition takes the form

Pe txt0) (al’ﬁ2) = tnown ch.f ... (30)

Since the chf. ¢

X.U)a(r)y(x)(“-*”v”) is the

Fourier transform of pdf £, ;. ... (@,@,,8).

eq. (28) can be restated in terms of the pdf as
follows:

8

_fx.(:)xz(ny(s)

[L}]
B + b fowmonn T

st

a
= G
ot f'x“”zﬂmsl + “‘ga,a;f’]tr}x,wm +
6f; nx,r
+ bg;llﬁ H0E (DX = 0, (31b)
az
where &%  is a differential operator (inclu-

) Oey
ding differentiation only with respect to
@,,a,), the exact form of which is easily

concluded by comparing the equations (31a)
and (31b). Marginal-compatibility and initial
conditions take now the form

fy(;-) (13) = fff’ﬁ(f)xz(f}ﬂs) (cx,,az,ﬁ)da‘daz =
Ri

= known density function, Vs>t , (3 2)

fo(.-,,;x}(,ﬂ] (&,,az) = known density function (33)

6. EVOLUTION EQUATION FOR THE
JOINT, RESPONSE-EXCITATION,
pdf UNDER STOCHASTIC
PARAMETRIC EXCITATION

Consider now the case y,(1)=0, y,(1)=0
(parametric excitation). Let now 7 (u,,u,,v)
be the joint, response-parametric excitation,
Ch.Fnl. In this case use will be made of the
formula

5 15,6, = ffm: (OB(0)-exp{~} 2 (dadB) . (34)

Cornbmmg formulae (9), (10), (12)-(15) and
(34) for functional derivatives, and taking into
account the differential system (2) (with
y,(H)=0), we obtain again equation (16), as

well as the following FDE:
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1d 5 5O 7. CONCLUSIONS. COMPARISON
F a0 "" 6, F 08 F WITH EXISTING METHODS BASED
b‘,, 5,7 - Lo 6(3, 9'__1,0"5 5.9 - ON THE FPK EQUATION

= f f d:(f)—bﬁ”a,(f)—bi”af(r)—b‘;’a (06903 (1)

6%, ()80 xexp{~} P, (daxdB) = 0. (35)
The new system of FDEs (16), (35) is also be

supplemented by the marginal-compatibility
condition (18) and the initial condition (19).

Working similarly as in Sec. 5, and taking
into account equation

1 7 10 0

?E'ﬁU o 3':-'6::(3; B f_zaﬁ 8v £ X (x5 (1)¥(s)’ (36)
Mo Uk 1
v =€;2§,(-)

we obtain the following equation for the joint,
response-parametric excitation, ch.f:

0 . 0
E%.mxzmm) L —H dii, (ox.{r)xz{r)y(f)
8 b:i} 33
n
[b o4, 37 Paomore 5 Pronovn T
1
0 by 8’
+ b)) —@, +—=— +
PN OGO P PRGN O
Ou, " i- ou, W
(L1
i —0. (7

i 0@, 00 WR»e

Marginal-compatibility and initial conditions
(29),(30) should also hold true. Applying the
inverse Fourier transform to eq. (37), we obtain
the following equation for the joint, response-
parametric excitation, pdf:

a
Ef’u(-')-'z(t}y(s) + % fx NOERTI0)
5 -
n bi;.t}azﬁ_% =0, (38)
o

2

where Z,

as the one appearing in (31b). Marginal-
compatibility and initial conditions (32), (33)
also hold true.

is the same differential operator

In this paper the characteristic functional
approach has been invoked in order to derive
new equations governing the joint, response-
excitation, ch.f and pdf of the ship’s roll
motion, velocity and excitation. Two cases
have been considered: First, external stochastic
excitation, due to the combined action of wind
and waves (eqs. (28) and (31)). Second, para-
metric stochastic excitation, due to the vari-
ation of the righting arm GZ and/or to the non-
linear heave-roll, pitch-roll coupling (egs. (37)
and (38)). Appropriate marginal-compatibility
and initial conditions are also given, in order to
make these equations uniquely solvable. Tech-
niques for the numerical solution of these
equations are under development and will be
presented in the near future.

In our approach both external and parame-
tric stochastic excitation are considered to be
general, smoothly-correlated, continuous-path,
stochastic processes. No specific simplifying
(artificial) assumptions, concerning either the
correlation structure or the distributions of the
stochastic data, are needed. Because of the
general nature of the excitation, the roll
response is generally non-Markovian.

It is expedient to compare our new equa-
tions with the ones obtained by means of the
classical Ito approach (see, e.g., Haddara 1974,
1983, Haddara and Zhang 1994, Muhuri 1980),
under the assumption that the excitation is a
Gaussian, delta-correlated process. In the later
case, it is straightforward to derive the corres-
ponding FPK equation that governs the joint
pdf ﬂ1(‘)":(f) = fr, (0%, (OAHCEZ) of the ship’s
roll motion and velocity. In particular, when
only external stochastic excitation is
considered, FPK equation takes the form:

a
Efxl(f)"z(f) f fj(f]x

2
9 j;ﬁ(f)x:(f)
o’

2

_(55°Y D, =0, (39

ol
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where 2D, is the intensity of the roll exciting
moment process (< y())y(t +7) > =20_6(7)).

In order to compare our new eq. (31) with
eq. (39), we integrate eq. (31) with respect to
3 , obtaining thus the equation
0

s +
ot Fewomo —%,,a,fxlmxm

N | 6 =ty
+bfm}a_fﬁﬂmmw)(al,a,,ﬁ)dﬁ_0 (40)

al
for the evolution of the g—marginal, (a,a,)

joint pdf of roll response (joint motion-velocity
pdf)
Fewno = Faonn (e0,)=

- ffﬂ(f)xz(x)y(s) (au ,Of,,ﬁ)dﬁ -
R

Eq. (39) [classical FPK] differs from eq. (40)
[generalized FPK] only in the last term which
is the one connected with the stochastic excita-
tion. The term appearing in eq. (39) is of local
character (second a,— derivative) and contains

(41)

the (known) intensity of the stochastic excita-
tion. The corresponding term in eq. (40) is non-
local (integrates over the whole range of
possible excitation values) and cannot be

expressed only in terms of Lm0 (a,,az), i

eq. (40) is not a closed equation. Additional
information about the dependence between
excitation and response should be used as a
closure condition. A general method providing
tractable closure conditions, through a chain of
FPK-like equations, will be presented else-
where. On the other hand, the difficulties asso-
ciated with the closure disappear if we choose
to work with eq. (31), solve it and find first the

joint pdf £ v (a,,e,,8), and then calcu-

late the marginal f, (0, )

1(1)%,(r) (

It is also interesting to note that the classi-
cal FPK eq. can be considered as a special case
of the new generalised FPK eq., also in terms
of their derivation. In fact, the classical FPK
can be (re)derivated by means of the character-
ristic functional approach applied to the finite

difference version of the initial-value problem
(1) under a delta-correlated, Gaussian excita-
tion. This result has been proved for the scalar
case in Sapsis and Athanassoulis (2008). The
corresponding study for a system of stochastic
differential equations will be presented in the
near future.

Similar conclusions can bed drawn for the
case of parametric stochastic excitation. The
classical Itd eq. in this case takes the form

a
Efxlmxzm # 5%(,! Sy
&F...... oo
alz (b:Ll) )2 -Dn 1% (0) E ! 2) =1 (42)
da,

whereas integrating eq. (39), we have:
a

_ +
ot Fewn %,G,L.mx:(r)

a
1 =
+b); @, 90 fﬁfxi(r)n(r)y:(r}dﬁ =0 (43)
2

Again the two equations differ only in their last
terms, and very similar comments as in the
previous case can be made.
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9. APPENDIX A: ABBREVIATIONS

ch.f characteristic function
Ch.Fnl characteristic functional
FDE(s) functional differential
equation(s)
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FPK Fokker-Planck-Kolmogorov (equation) . . (@) .
ODE(s) ordinary differential eq%lation%sgl wrt %, in the directions hﬂ’,hf,f’,...,h: 18
PDE(s) partial differential equation(s)

gdf probability density function
DE(s) stochastic differential equation(s)

10. APPENDIX B: GATEAUX
FUNCTIONAL DERIVATIVES

The first-order Gateaux functional deri-
vative of functional % (u,,u,,v) with respect
to the first variable (u, ), along the direction 4,
is defined as follows (Volterra 1930/1959/2005,
Beran 1968):

8, F ([msh, |u,v) =6, F =

. d
lim E?’(ul -i-ahul,uz,fu). (44)

E—0

To save space, the abbreviation 6, % has
been used instead of 6nl.97([ul;h"|],u,,v).
Derivatives 6,,.% and 6,7 are defined

similarly.

Applying the definition (44) to the Ch.Fnl
eq. (8), we easily obtain:
5..,'¢([”|§hu,]=“vv) =

= ffi<hul,a, >exp{-} 7, (dadB) (45)
where
exp{}=exp{i(<u,a> + <u 0>+ <0,6>)}.

Applying the eq. (45) to A, =6,(-), the
Dirac delta functional supported at ¢, we get
eq. (9). Egqs (10) and (11) are obtained
similarly.

Assume now that g, is a non-negative integer,
and apply ¢, times consecutively Gateaux

differentiation to functional % (ul,uz, v) wrt to

the first functional variable u,, in the directions

WK, .., hf:'). This is the g, —fold Gateaux

derivative of % (u,,uz,v). Especially for the
Ch.Fnl (8), the g,—fold Gateaux derivative

given by the formula
60" F =6, F ([ |ry0) =
=ffiq‘<h2:,x,>...<h:':l),xl>exp{---}gjy(do:dﬁ).

(46)
Applying the above general formula to the
directions h,’ = h,” =k, =6,(-), we find

60T =62 F ([,36,03,6,02,6,0)]0)=

_ f f P2 (ep{~} 7, (dadB).  (47)

In a similar manner, we can define the
(ql,qz,c_;; )— fold mixed Gateaux derivative, ¢ —
fold wrt to u,, g,—fold wrt to u, and ¢,—

fold wrt to wv, assuming that all these
derivatives do exist.
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