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ABSTRACT  

The earlier developed algorithm for simulating manoeuvring motion in regular waves was 
augmented by computation of vertical and transverse shear forces and bending moments developing 
in the time domain. While the integrated forces and moments affecting motions of the ship as a rigid 
body were estimated relatively rigorously, using the auxiliary state variables method for 
representation of radiation forces in the time domain, the corresponding distributed loads are 
calculated in a simplified way exploiting the concept of a slowly varying encounter frequency. 
Simulations were carried out for straight runs, turning manoeuvres and zigzags for the S-175 
container ship. 
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1. INTRODUCTION 

A ship’s safety in a seaway is a multi-factor 
and multi-criterial issue. There can happen 
situations when the vessel is only partly 
incapacitated, that may happen because of high 
instantaneous inclinations and large local 
accelerations both impairing the crew’s 
alertness and productivity and, possibly, 
functioning of the weapons systems. However, 
the ultimate danger to the ship’s very existence 
is mainly associated with two events: (1) 
capsizing in roll, and (2) loss of global hull 
strength, most probable in longitudinal waves 
and due to longitudinal motions. Another 
undesirable phenomenon, green water shipping 
on deck does not present per se clear and 
present danger for any sea-going ship rigged 
appropriately for storm conditions but it can 
contribute to additional hull loads.  

Information on the distributed dynamic 
loads acting upon the ship hull in waves is, as a 
rule, of the same importance as information on 
the ship roll and roll motion stability and it is 
sometimes even more important than the data 
on the heave and pitch amplitudes. That is why, 
most seakeeping codes provide estimates for 
the shear forces and bending moments 
computed simultaneously with the ship 
motions kinematics (Fonseca and Guedes 
Soares, 1998; Watanabe and Guedes Soares, 
2000). Existing generalizations of seakeeping 
codes on the arbitrary base motion are mainly 
treated as codes for manoeuvring simulation in 
waves and do not provide information on 
distributed loads. 

One of the first studies linking, in some 
sense, the ship bending moments to the 
manoeuvring motion was undertaken by 
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Guedes Soares (1990) who studied how 
voluntary heading changes could influence 
extreme expected magnitudes of bending 
moments on the rough sea. However. 
manoeuvring was considered there in the 
navigation sense i.e. a ship was supposed to 
always follow some straight path. 

In some sense, such an approach is justified 
as the most heavy loads are expected to occur 
during a long straight run with the least 
favourable parameters as manoeuvring itself 
apparently does not increase longitudinal 
stresses. At the same time, importance of a 
capability to assess hydrodynamic loads in 
arbitrary curvilinear motion seems obvious 
from the viewpoint, for instance, of 
accumulating more realistic statistical data. 

An attempt to combine computation of 
distributed loads on the ship hull with the true 
manoeuvring simulation is undertaken in the 
present study.  

Mostly, these will be loads related to the 
wave excitation although the transversal loads 
include also the still-water manoeuvring 
contribution. Obviously, this contribution will 
not be significant for most vessels although 
once it happened to be critical to airships which 
suffered some cases of loss of global transverse 
strength during tight turns in the horizontal 
plane. Exactly that phenomenon stimulated 
development of a semi-empiric strip method 
for predicting transverse loads, shear forces and 
bending moments on airship hulls in 
curvilinear motion widely known nowadays as 
the Munk method (Munk, 1924).  

The present approach is based on the 
unified mathematical model for ship 
manoeuvring in waves developed earlier by the 
authors. Although a brief outline of the method 
itself is presented below, its more detailed 
exposure can be found in (Sutulo and Guedes 
Soares, 2006a,b, 2008). 

When the global ship strength is associated 
with the ship hull’s integrity, are usually 

discussed vertical (approximately) loads acting 
in the centerplane and treated as the most 
important, torsion loads which can be 
important for cargo vessels with large deck 
openings, and transverse loads, less critical for 
the majority of ships. 

A historically conditioned separation of 
static (or still water) and dynamic vertical loads 
is not very important for most mathematical 
models as the former is just a specific case of 
the latter. More meaningful is distinction 
between the “normal” hydrodynamic loads 
observed in absence of the ship slamming and 
green-water shipping and “additional loads” 
accompanying the mentioned phenomena. 
Also, hydrodynamic loads can be estimated 
with account for elastic effects which can be 
caused by springing vibrations of the ship hull 
excited by “normal” loads and also — by 
whipping from slamming shock loads. If elastic 
effects are thought to influence significantly 
the rigid-body motions, the primary 
formulation must be hydroelastic (Wu and 
Moan, 1996). Often, however, a simplified 
approach is sufficient. Namely, the loads are 
primarily determined on the rigid hull serving 
as input for vibrations analysis based on the 
modal shapes approach. The vibrations’ eigen-
frequencies and mode shapes are then pre-
calculated using the finite-element method and 
the hull’s approximation with a Vlasov or 
Timoshenko beam. The vibrations analysis 
results in estimates of equivalent quasi-steady 
loads which can exceed the corresponding 
“rigid hull” values by up to 20–30 percent. 

In the present study, however, which is 
considered as one of the first steps to 
generalization of the loads estimation methods 
for the case of an arbitrary curvilinear base 
motion, only “normal” loads on the rigid hull 
will be dealt with. 
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2. PROBLEM STATEMENT AND 
MATHEMATICAL MODEL 

2.1 Frames of Reference and Main 
Definitions 

It is assumed that a common monohull 
surface displacement ship is performing and 
arbitrary curvilinear motion on the fluid surface 
in presence of regular monochromatic two-
dimensional surface waves of small steepness. 

The primary Cartesian frame of reference 
Oξηζ  is Earth-fixed with its origin lying on 
the undisturbed free surface, with the ζ -axis 
pointing vertically downwards, the ξ -axis 
lying in the ship’s centerplane at the initial time 
moment , and with the 0t = η -axis directed 
initially to the starboard. The ship is treated as 
a rigid body with its shape described in the 
body-fixed axes Cx , where the origin  is 
the intersection of the centerplane, midship 
plane and of the initial equilibrium waterplane. 
At , the body axes are supposed to 
coincide completely with the Earth-fixed axes 
while deviating from them in the further 
development.  

yz C

0t =

As the rigid-body formulation is, obviously, 
6 degrees of freedom, the instantaneous 
position of the ship with respect to the Earth-
fixed frame is described by usual six 
generalized co-ordinates: advance/surge Cξ , 
transfer/sway Cη , sinkage/heave Cζ , roll angle 
ϕ , pitch angle θ  and heading/yaw angle ψ . 
The generalized co-ordinates form a 6-
dimensional arithmetic vector О represented 
usually as a column matrix. projections of the 
ship’s instantaneous velocity vector V  in the 
body axes are the linear velocities of surge u , 
sway , and heave , and the angular 
velocities of roll 

v w
p , pitch , and yaw . All 

these velocities form a 6-vector U . 
q r

The body axes are used to write down the 
basic dynamic equations of motion and for 

final representation of hull loads. But most of 
hydrodynamic forces and loads will be 
determined primarily in the auxiliary semi-
fixed frame of reference C1 1 1 1ξ η ζ

yz

,t

M

, ,

 which only 
differs from the body-fixed frame Cx  by not 
being involved into motions of heave, pitch and 
roll. 

2.2 Brief Description of Mathematical 
Models for Ship Dynamics 

The equations of motion of the ship can be 
written in the following general form: 

0 , , , , , )w Ra nω δ+MU Ц(M , U) = Ш(О, U

О= T(О)U,

&

&
  (1) 

where  is the inertial matrix including 
the ship mass m , ship moments of inertia 

,xx yy xzzI zI I I  and added mass coefficients 
corresponding to the infinite frequency, Ц  is 
the vector function describing centripetal 
effects,  is the proper inertial matrix with 
the added-mass terms excluded, 

0M
Ш is the 

vector of total hydrodynamic forces and 
moments,  is the wave amplitude, wa ω —the 
wave frequency, Rδ  the current rudder angle, 

 is the propeller rotation frequency; T  is the 
matrix comprising sine and cosine functions of 
the Euler angles and linking time derivatives of 
the generalized co-ordinates with the velocities 
in the body axes. Explicit forms of the 
introduced matrices and vector functions are in 
fact established in general mechanics but can 
also be restored from the co-ordinate form of 
the same equations given in (Sutulo and 
Guedes Soares, 2006a,b). 

n

The thus outlined ship mathematical model 
is somewhat simplistic as in reality it includes 
also models for the steering gear and the main 
engine but this is less relevant to the topic of 
the present study. 
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The model devised by Sutulo and Guedes 
Soares (2006a,b, 2008) presumes that each of 
the force/moment components is described in 
the time domain and consists of the following 
contributions: 

manoeuvring forces estimated according to 
any method recognized in the still-water 
manoeuvring: the classic semi-empiric method 
developed by Inoue et al. (1981); 

hydrostatic and Froude–Krylov forces; as 
the algorithm is nonlinear in this respect, these 
two parts cannot be separated; 

diffraction excitation forces; 

radiation or inertial-and-damping 
hydrodynamic forces. 

Computation of the last two categories of 
forces presumes the linear free-surface 
condition and provisions for their estimation at 
an actual instantaneous position of the ship 
were made. However, at present, due to some 
technical difficulties they are computed at the 
equilibrium position of the hull i.e. the code is 
fully linear in this respect. At the same time, 
the zero-frequency contribution related to the 
Munk forces is also estimated and subtracted 
from the radiation forces as it corresponds to 
the still-water manoeuvring forces estimated 
independently, see (Sutulo and Guedes Soares, 
2008) for details. 

The mentioned radiation forces in the time 
domain are computed with the help of an extra 
set of ordinary differential equations for 
auxiliary state variables (Sutulo and Guedes 
Soares, 2007). This sets resulted from 
application of the inverse Fourier transform to 
the integrated forces in the frequency domain 
which, in their turn, are obtained through the 
integration of the sectional loads over the hull’s 
length. As result, the time-domain 
representations of the radiation hull forces used 
in this mathematical model do no longer 
contain any information about distributed 
loads. In general, this is not conditio sine qua 

non for application of the auxiliary state 
variables method but any alternative algorithm 
keeping this information would have require a 
much greater number of required auxiliary state 
variables and corresponding differential 
equations. That is why, a less rigorous but 
more efficient approximate method was chosen 
here for estimating distributed radiation loads 
in the time domain. 

2.3 Brief Description of Mathematical 
Models for Ship Dynamics 

The transverse loads must be finally 
considered in the local axes parallel to the body 
axes y  and . Using traditional notations: 

 for the transverse load and  for the 
“vertical” load it is possible to assemble them 
into the arithmetic vector 

z
(x ( )v x2 )v 3

2 3( , )v v v= . Then, 
the d’Alembert principle can be applied to each 
section resulting in 

iner act
,v v v= +                     (2)  

where 
iner

v  is the inertial load and 
act

v  is the 
active load. 

The inertial load can be represented as 

iner
( ) ( ), ( ) ( ) ,v m x v x m x w x= − −& &         (3) 

where  is the ship’s mass distribution and 
the local accelerations are defined as (Lourie, 
2002): 

( )m x

( ) ,
( ) .

v x v ur wp r x pqx
w x w uq wp qx pr x

= + − + +
= − + − +

& & &

& & &
                (4) 

However, the local accelerations can be 
computed in this way if only the integrated 
active forces on the ship hull are formed 
strictly from calculated sectional loads as 
otherwise the forces will not be balanced and 
the shear forces and bending moments will not 
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be estimated correctly. This is exactly what 
happens in the present formulation and while 
the vertical loads could have been treated in a 
more consistent way, albeit at the expense of 
increased complexity of the code, this would be 
much more problematic with the horizontal-
plane loads as the most appropriate empiric 
models do not contain information about 
longitudinal loads distribution. A similar 
situation happens in purely seakeeping codes 
when the loads are estimated with account for 
slamming and/or green water while the ship 
motions are supposed to be not affected with 
these factors. In such cases, the parameters 

 and  in eq. (3) must be substituted 
with the effective local accelerations  and  
restored using the d’Alembert principle applied 
to the whole hull. Namely, 

( )u x& ( )v x&
a a

r

q

y z

( ) ( ) ,

( ) ( ) ,
y y G

z z G

a x a x x a

a x a x x a

= + −

= − −
               (5) 

where  are the effective accelerations of 
the centre of mass of the ship and  are the 
effective angular accelerations, all defined as 

,y za a
,r qa a

, 2,3act

2act

3act

1 ( )d ,

1 ( )( )d ,

1 ( )( )d .

y z
L

r G
zz L

q G
yy L

a v x x
m

a v x x x
I

a v x x x
I

=

= −

= − −

∫

∫

∫

x

x

1( )

… ..(6) 

The active loads are primarily estimated in 
the semi-fixed axes where the projections will 
be 

12 ηγ γ ξ≡ 1( ) and 
13 ζγ γ ξ≡  where it will 

be assumed that 1 xξ ≡  which is accurate 
enough for any realistic pitch angles observed 
on surface ships. The active loads in the body 
axes will be: 

2act 2 3

3act 2 3

cos cos sin ,
sin cos cos .

v
v

γ ϕ γ θ ϕ
γ ϕ γ θ ϕ

= +
= − +

       (7) 

Also, the active loads can be decomposed 
like this: 

act RAD FK+HS DIF
,

g
v v v v v= + + +    (8) 

where the subscripts stand, left to right, for: 
radiation, Froude–Krylov–hydrostatic, 
diffraction, and gravitational components. 

The gravitational component is the easiest 
to define: 

2 30; ( ) .g g m x gγ γ= =                   (9) 

If the oncoming waves potential wϕ  and the 
corresponding free surface elevation wζ  are 
written as 

1 1 2 1

1 1 2 1

( )

( )

Re ,

Re ,

k i k k i tw
w

k i k k i t
w w

iga e e

a e e

ζ ξ η ω

ζ ξ η ω

φ
ω

ζ

− − +

− − +

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤= ⎣ ⎦

       (10) 

where  are projections of the wave 

number vector and 
1 2,k k

2 2
1 2 ,k k k= + The Froude–

Krylov and hydrostatic loads will be expressed 
as 

[ ( )]
FK+HS

( )

[ cos( ) sin( )]

( )

d ( )

d ( ),w w

i t t
j j w

C

k ik
j

C

g n C ga e

e n

ω

ξ

ζ ξ χ ψ η χ ψ

ξ

γ ρ ζ ξ ρ

C ξ

+Φ

− − − + −

=− −

×

∫

∫
(11) 

where 2,3j = ;  is the contour of the hull 
section, 

C
(k cos sin )C w C wξ χ η χΦ = − +

w

 is the 
total wave phase and χ  is the waves 
propagation angle counted from the axis Oξ . 

The diffraction loads are : 

2,3 2,3( ) Re ( ) ,ei t
DIF dx f x e ωγ ⎡ ⎤= ⎣ ⎦      (12) 
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where 1e uk vk2ω ω= − −  is the encounter 
frequency, and 

cos( )
2

( )

sin( )
3

[ sin(

€) ] d ( ),

w

w

iki
d j w w

C x

k ik
j

f a e e n

in e C x

ξ χ ψ

ζ η χ ψ

ρω χ

ψ φ

− −Φ

− − −

= −

− −

∫
(13) 

where 1 1
€ ( , )jφ η ζ  are the two-dimensional 

radiation functions calculated at the absolute 
wave frequency. 

The complex amplitudes of the radiation 
loads in the frequency domain can be 
represented as (Sutulo and Guedes Soares, 
2006a): 

4

2
4

2
4

2

€ €( ) ( , ) ( )

€ €( , ) ( )

€ €( , ) ( ),

j j

j j

j

€x i x

u x

u x u x

γ ω μ ω

λ μ ω

μ ω

=

=

=

= −

′+

′+

∑

∑

∑

l l
l

l l l
l

l l
l

u x

u x      (14) 

where €jμ l  are the frequency-dependent 
sectional added masses; jλ l  are the load-
reduction functions implicitly accounting for 
viscosity; the prime means derivative with 
respect to x , and €ul  are complex amplitudes of 
the sectional horizontal and vertical velocities. 

Assuming that the ship is always oscillating 
with the encounter frequency and applying 
usual formal transformations the following 
approximate formulae for the time-domain 
radiation loads can be obtained: 

4

2

4

2

2

4

2

2

( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( )

1 ( , ) ( ) ,

j j e

j e

j j e

j
j e

e

j e

j e
e

x t x

x u x t

u x u

x u x t

u x u t

x u t

γ μ ω

ν ω

λ μ ω

λ
ν ω

ω

μ ω

ν ω
ω

=

=

=

⎡= − ⎣

⎤+ ⎦

′⎡+ ⎣

⎤
′− ⎥

⎦

′⎡+ ⎣

⎤
′− ⎥

⎦

∑

∑

∑

l l
l

l l

l l l
l

l

l l

l l
l

l l

&

&

&

u x t

x t

     (15) 

where jμ l  and jν l  are respectively the 
traditional frequency-dependent added mass 
and damping coefficient and the local 
velocities and accelerations are: 

1 1 1 1
2 3 4

1 1
2 3 4

1 1 1 1
2 3 4

1 1
2 3 4

; ;

; ;

; ;

; ;

u v xr u w xq u p

u r u q u

u v xr u w xq u p

u r u q u

= + = − =

′ ′ ′= = − =

= + = − =

′ ′ ′= = − =

& & & & & & &

& &

1

1

;

0;

;

0;

     (16) 

where the velocities with the superscript “1” 
are similar to corresponding parameters 
without the subscript but transformed to the 
semi-fixed axes. 

Presence of the squared encounter velocity 
in the denominator in eq. (15) is a common 
result of artificial manipulation with frequency-
domain expressions. It does not bring any harm 
as the damping coefficients also vanish 
accordingly as the frequency goes to zero. 
However, in purely seakeeping formulations 
this denominator could be avoided if quasi-
coordinates uπ l  such as π =&

l l  were 
introduced. Though, this is not applicable here 
as the velocities can be aperiodic and the 
corresponding quasi-coordinates can go to 
infinity resulting in unrealistic estimates of the 
loads. 
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When the distributed total loads are 
computed, the shear forces V j  and the 
bending moments 

Time, s
0 500 1000 1500

-40000

-20000

0

20000

40000

, 2,3=j

jM  are calculated as usual: 

bow

bow

( , ) ( , )d ;

( , ) ( , )d .

j j
x

j j
x

V x t v t

M x t V t

ξ ξ

ξ ξ

=

=

∫

∫
      (17) 

Here, the first integration  must be 
performed in a special way for the diffraction 
loads as the load defined by eq. (13) resulted 
from the Tuck transformation (Salvesen et al., 
1970), and is not quite the real load density. 
3. NUMERICAL EXAMPLES 

The algorithm described in the previous section 
was used for augmenting the combined 
manoeuvring-and-seakeeping code developed 
earlier by Sutulo and Guedes Soares (2006a,b). 
Some computations have been performed for 
the well-known benchmark vessel S-175 
described in detail in many sources including 
(Watanabe and Guedes Soares, 2000). The ship 
has the length 175m between perpendiculars 
and its initial speed was always 16.7knots 
which corresponds to the Froude number 0.2. 
Some simulations were performed in still water 
but mostly in regular waves with the length 
175m and steepness 1/40. These were always 
heading waves, at least in the approach phase 
of the manoeuvre which always lasted 37.5s. 

Time histories for the shear forces and 
bending moments in straight run are shown on 
Figures 1 through 4. Always are shown the 
midship values but on stretched graphs also are 
presented minimum and maximum values 
along the ship’s hull. Detailed verification of 
the numerical results still was not the main 
objective of the present study but the 
amplitudes of the loads fairly well correspond 
to those obtained previously for the same 
vessel in similar conditions (Watanabe and 
Guedes Soares, 2000). The midship vertical 
bending moment is positive in hogging. 

Figure 1. Straight run in heading waves: time 
history for the midship shear force. 

Time, s
1000 1050 1100 1150

-100000

-50000

0

50000

100000 V3mid, kN
V30min, kN
V30max, kN

Figure 2. Straight run in heading waves, 
zoomed: time histories for the midship, 
minimum and maximum, shear forces. 

Distributions of the vertical load and shear 
force and of the bending moment, as functions 
of the longitudinal body co-ordinate non-
dimensionalized by the ship’s half-length and 
corresponding to the arbitrarily chosen time 
moment t 100s= , are shown on Fig. 5 and 6.  

All further plots correspond to the 
manoeuvring motion. Trajectory of the ship in 
still water turn corresponding to the 35deg 
rudder starboard is shown on Figure 7. The 
same manoeuvre executed in waves resulted in 
the trajectory presented on Figure 8. Figures 9 
through 12 show time histories of the 
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horizontal shear forces and bending moments 
during the turning motion in waves. As 
expected, the absolute values in the horizontal 
plane are definitely smaller than in the vertical 
one. 

Figure 3. Straight run in heading waves: time 
history for the midship bending moment. 

Figure 4. Straight run in heading waves, 
zoomed: time histories for the midship, 
minimum and maximum bending moments. 

A time history for the vertical bending 
moment is shown on Figure 13. As expected, 
the pattern of the time history looks more 
complicated mainly due to the continuous 
alteration of the relative wave direction but the 
extreme values do not exceed those obtained in 
the straight path run although, in general, this is 

less evident for another wave parameters and, 
probably, more comparative simulations are 

required. 

xcent

-1 -0.5 0 0.5 1
-30000

-20000

-10000

0

10000

20000

30000

v3, kN/m
V3, kN

Time, s
0 500 1000 1500

-200000

0

200000

400000

Figure 5. Snapshot of the vertical load density 

and shear force distribution. 

xcent
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-100000

-80000
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-40000

-20000

0

20000
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Time, s
1000 1050 1100 1150

-200000

0

200000

400000

M3mid, kN*m
M3min, kN*m
M3max, kN*m

Figure 6. Snapshot of the vertical bending 
moment distribution. 

Finally, the Figures 14 and 15 present time 
histories of the horizontal and vertical bending 
moments in the standard 20°–20° zigzag 
manoeuvre executed with the starboard initial 
helm and with the initial course heading the 
waves. 
4. CONCLUSION 

The earlier developed manoeuvring code 
possessing an option of the 6DOF motion in  
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Transfer, m
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20000
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Figure 7. Trajectory in the 35deg helm turning 
manoeuvre in still water. 

Figure 8. Trajectory in the 35deg helm turning 
manoeuvre in waves. 

Figure 9. Turning in waves: time history for the 
midship horizontal shear force. 
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Figure 10. Turning in waves: time histories for 
the horizontal midship, minimum and 
maximum, shear forces (zoomed). 
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Time, s
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-100000
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Time, s
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400000

Figure 11. Turning in waves: time history for 
the horizontal midship bending moment. 

regular waves has been enriched with the 
option for approximate computation of vertical 
and horizontal loads on the ship’s hull 
including the shear forces and bending 
momemts. The numerical results obtained so 
far in simulations carried out with the 
benchmark container ship looked reasonable. 
At the same time, it was noticed that the 
problem of accurate estimation of horizontal 
loads in general manoeuvring motion contains 
a major difficulty stemming from extreme 
scarcity of data on the manoeuvring forces’ 
longitudinal distributions corresponding to 
typical empiric mathematical models 
preferably used in ship manoeuvring. Further 
development of the code in this direction 
should thus depend on the evaluation of 
importance of the output of this nature. 

Figure 12. Turning in waves: time histories for 
the horizontal midship, minimum and 
maximum, bending moment (zoomed). 

Time, s
0 500 1000 1500
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Figure 13. Turning in waves: time history for 
the vertical midship bending moment. 
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Figure 14. Zigzag manoeuvre in waves: time 
history for the horizontal midship bending 
moment. 
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Figure 15. Zigzag manoeuvre in waves: time 
history for the vertical midship bending 
moment. 
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