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SURF-RIDING BY AN EXTENDED MELNIKOV METHOD 
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ABSTRACT  

Αn advanced version of Melnikov's method is discussed for identifying efficiently the condition 
of complete disappearance of the overtaking wave periodic motion of ships (upper threshold of surf-
riding), in an environment of steep following seas. The key advantage of this method is that, it 
overcomes the constraint of small damping and small forcing that is essential when the ordinary 
Melnikov method is applied. The method was applied for a reference ITTC ship and the result was 
compared to that obtained on the basis of ordinary Melnikov analysis. Moreover, it was evaluated 
against direct numerical predictions of the threshold, obtained through simulation.  
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1. INTRODUCTION 

The surf-riding behavior is realised by a 
ship when she is forced to move with speed 
that is equal to wave celerity, in an 
environment of steep following seas (Kan 
1990). It is known that this phenomenon may 
work as precursor of broaching. Over the years 
surf-riding has been studied analytically, 
numerically and experimentally (for a review 
see for example Spyrou 2006). Accruing from 
the fact that, dynamically, the condition of 
global capture into surf-riding ("upper 
threshold") corresponds to a typical homoclinic 
saddle connection event, one of the methods 
that one could applied for predicting it is the 
so-called Melnikov method (see for example 
Guckenheimer & Holmes 2002). A key 
advantage of this method is that, it can produce 
a very simple formula that could be used in the 
context of assessing a ship's tendency for 
broaching, at the initial design stage. On the 
other hand, the method is mathematically valid 
if the terms that play the role of damping can 
be reasonably assumed as “small”. The same 

assumption is necessary for the terms that 
represent the external forcing.  

In order to overcome the constraint set by 
the assumption of small damping and small 
forcing, in the current paper is discussed 
another, more advanced, version of Melnikov’s 
method, firstly introduced by Salam (1987) and 
expanded further by Endo & Chua (1989) who 
have applied it successfully. With the new 
mathematical formulation, the unperturbed sub-
system inside the originally studied system 
could have a dissipative nature, i.e. it does not 
need to be assumed as a Hamiltonian one. 
Thus, excursions from the commonly made 
assumption of "near-Hamiltonian" character of 
the system can be comfortably handled. 

Intrinsic to the implementation of 
Melinkov's method is the existence of a 
homoclinic orbit for its unperturbed sub-
system. Realisation of such an orbit remains 
essential in the new formulation; and, if it does 
not arise naturally, it has to be created. In this 
respect it often suffices to introduce an initially 
unknown constant, whose value could be 
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identified on the basis of the condition of 
formation of a homoclinic orbit. This constant 
is subsequently subtracted when the original 
("perturbed") system is examined; hence it 
should be a "small" quantity, so that the final 
system remains identical to the initial one. 
Thereafter, the integration over the homoclinic 
orbit, that is intrinsic to the application of 
Melnikov's method, can be performed without 
difficulties.  

Real ship data has been used in order to 
evaluate this new method against alternative 
predictions of the locus of global surf-riding as 
one of the key parameters, the nominal Froude 
number or the wave height, are varied. The 
results obtained were very close to the 
numerical values and consistently closer than 
the results of its “ordinary” version; at the 
expense however of not been able to produce a 
handy "closed-form" expression, like the 
ordinary Melnikov method does. 

2. FORMULATION OF THE PROBLEM 
AND NEW METHOD OF SOLUTION 

2.1 A basic mathematical model 

We have adopted the modelling approach 
and the symbols used in Spyrou (2006). The 
nonlinear equation of surging in an exactly 
following and "harmonic" seaway accrues from 
application of Newton’s second law: 

( ) wU

dUm X T R X
dt

− = − +&  (1) 

m  and UX− &  are respectively, the mass of 
the ship and the surge "added mass". U  is the 
instantaneous velocity of the ship in the surge 
direction. Functions T  and R  stand, 
respectively, for thrust and resistance. wX  is 
the Froude-Krylov force in surge. For a 
harmonic incident wave, the Froude-Krylov 
force could be approximately expressed as: 

sinwX f k= −

x  is the distance from the centre of gravity 
of the ship to a reference wave trough (as a 
matter of fact, the origin moves with wave's 
celerity). f  is a constant that contains the 
amplitude of wave excitation and  is the 
wave number.  Resistance could be expressed 
as some function of velocity U , e.g. with the 
following simple polynomial form: 

k

32
1 2 3R rU r U rU= + +                                      (3) 

( 1, 2,3ir i )=  are appropriate coefficients. 

Propeller thrust should be a function of, at 
least, velocity and propeller rate : n

2 2
2 1 0T U Un nτ τ τ= + +           (4) 

( 1, 2,3)i iτ =  are suitable coefficients. 
Substituting (2) - (4) into (1), then expressing 
everything with respect to x U c= −& , where c 
is the wave celerity, and letting y kx= , the 
differential equation for surging in following 
seas can be expressed as follows: 

2 3
1 2 3'' ' ' ' sin 'y p y p y p y y r q by+ + + + = −  (5) 

The prime denotes the derivative with 
respect to the scaled time qtτ =

( 1,2,3)p i
. Also,  

i =  and  are suitable functions of , q ri

iτ , , and  f  and, for a given ship, these are 
constants. One should notice that '  was 
separated from 

c
b y

1 'p y . This is due to the fact that 
the coefficient b contains the unknown 
parameter n. The same holds for r. Therefore, if 
the wave had been fixed, r and  would be the 
unknown quantities of our problem.  

b

2.2 Implementation of the extended 
 Melnikov method 

In the ordinary Melnikov method the 
unperturbed sub-system is always assumed to 
be Hamiltonian and thus it may not include any 
damping terms. As is obvious, the subsequently 
applied perturbation should, at best, contain x                                               (2) 
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damping as a small (in fact infinitesimal) 
quantity. However, the extended Melnikov 
method can accommodate damping terms that 
can be large. Moreover, such terms may be 
included even in the definition of the 
unperturbed sub-system, that needs no longer 
to be Hamiltonian.  

Having said that, a homoclinic orbit for the 
unperturbed sub-system is still needed and, 
around that one should calculate the Melnikov 
integrals.  It is often possible to obtain such an 
orbit, by introducing an initially unknown 
constant "torque" σ , whose value needs to be 
identified.  Subsequently our unperturbed sub-
system should become: 

2 3
1 2 3'' ' ' ' sin 0y p y p y p y y σ+ + + + + =            (6) 

In (6) one could have assumed all linear and 
nonlinear terms as large, without facing any 
difficulty in the implementation of the method. 
However, in the sample ship that was 
investigated here for the purpose of 
demonstrating the potential of the method, the 
cubic damping term turned out to be a really 
small number, when the scaled velocity  
obtained realistic values. Subsequently, in this 
case only linear and quadratic damping terms 
needed to be treated as large quantities and our 
unperturbed sub-system could be somehow 
simplified: 

'y

2
1 2'' ' ' sin 0y p y p y y σ+ + + + =             (7) 

Then the perturbation should become: 

33 1 1( ) ' 'pb rg y y y
q

ε σ
ε ε ε ε

⎛ ⎞
= − − + +⎜

⎝
⎟
⎠

               (8) 

The Melnikov function that corresponds to 
our system is given by the following 
expression (Salam 1987): 

3
0 1 2

1( ) pb r

21, II  and 3I should be calculated by the 
following integrals:  

2
1 2 1 2 1

4
2 2 1 2 1

3 2 1 2 1

exp( 2 ) ;

exp( 2 ) ;

exp( 2 ) .

I y p t p y dt

I y p t p y dt

I y p t p y d

∞

−∞

∞

−∞

∞

−∞

= +

= +

= +

∫
∫
∫ t

                      (10) 

where ( 1y , 2y ) are the coordinates on the phase 
plane ( )',y y  of the homoclinic orbit for the 
unperturbed system (6). The threshold of 
global surf-riding is found when the Melnikov 
function becomes zero. This should happen if: 

3 21

3 3

C

p IbIr
q I I

σ− = −
14243

                                 (11) 

3M t I I
q

σ
ε ε ε

⎛ ⎞
= − − + +⎜ ⎟

⎝ ⎠
I  (9) 

As 3p  and  are system parameters, for a 
specific ship and a specific wave these are 
constants. 

q

1I , 2I , 3I  and σ  are constants too 
that can be calculated. In particular for 
calculating σ , two points are selected in the 
vicinity of the saddle of sub-system (7), one 
very close to its outset and the other very close 
to its inset (their directions are known from 
linear analysis around the saddle - to be noted 
that we refer to a cylindrical phase - plane 
where the two saddles of sub-system (6) 
coincide). Dynamically, the unstable manifold 
coming from the one point will end up at the 
other one in finite time T. The coordinates of 
these points ( ,1 2 )x x  can be expressed in terms 
of σ . And coordinates of the homoclinic orbit 

 are functions of 1( ,F F2 ) σ and T. Then there 
are two equations and two unknowns. 

1 1

2 2

( , ) ( ) 0;
( , ) ( ) 0.

F T x
F T x

σ σ
σ σ

− =
− =

                                   (12)      

The value of σ  can be determined by 
numerically solving (12). Details of obtaining 
the values of σ in a general context are 
discussed in Endo and Chua (1989). The 
homoclinic orbit 1 2( , )y y  needs to be 
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determined numerically because its analytical 
calculation on the basis of (7) seems unlikely. 
Also, numerically should be carried out the 
integrations (10), for the same reason. The right 
hand side of (11) is a constant. The only truly 
unknown terms are r and b, which are 
functions of propeller rate n. Given the wave 
height, the critical propeller rate which may 
lead to global surf-riding should be determined 
as solution of equation (11). 

It should be reminded that, the ordinary 
Melnikov method produces the following 
simple, "closed-form", expression for the 
unknown quantity r (Spyrou 2006): 

1 2
4 4 322

3
C

r b p p
q π π π
+ = − + −

144424443
3p

34.5

     (13) 

As a matter of fact, one is curious to 
observe how close to each other stand the 
results produced by the two methods. 

3. PRELIMINARY RESULTS 

Data from the well-known ITTC purse-
seiner with length L m=  has been used in 
order to evaluate the method. The wave length 
λ  was fixed at twice the ship length.  The 
wave steepness /h H λ=   could be varied, 
depending on the nominal Froude number 
( is the wave height). The Froude-Krylov 
force was calculated in the standard way.  Then 
the value of 

H

σ  was determined for each wave 
steepness scenario. Finally, the critical values 
of  were obtained. Repetitive application 
of these steps produced, after overlapping the 
graph deriving from expression (13), the 
diagram of Fig. 1 where, for convenience, as 
independent parameter is used the wave 
steepness h. This is plotted versus the quantity 
named as “C” in equations (11) and (13). One 
observes that, as the wave steepness is 
increased, the predictions from these two 
methods come closer to each other. Higher 
steepness is indeed the area of practical 
interest. 

/r q

n
Since  and  are functions of propeller 

rate, the critical values of propeller rate  (and 
thus nominal Froude number) can also be 
calculated as the wave steepness is varied. 
Moreover, numerical simulations can be 
carried out on the basis of the original system 
given by Eq. (5) in order to assess the 
differences. The comparison of the three 
methods is shown in Figure 2. The extended 
Melnikov method follows consistently the 
numerical predictions based on the original 
system even in the lower wave steepness region 

where the ordinary Melnikov diverges. 

r b

Figure 1. Comparison of the constant values 
between the two Melnikov methods.     

Figure 2. Comparison of boundary curves of 
global surf-riding according to the three 
different methods. 
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4. CONCLUSIONS 

An advanced version of Melnikov’s method 
was implemented for analyzing the surf-riding 
problem, for the purpose of overcoming the 
assumption of small damping that is intrinsic to 
the standard Melnikov. Indeed, the new method 
seems to be producing a result of consistently 
good accuracy; however the console of having 
a simple analytical formula is not catered. The 
possibility of a semi-empirical correction of the 
standard Melnikov formula in the light of the 
new result could be worthy of investigation.  
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