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ABSTRACT  

The present paper employs a neural network based approach for fitting a roll motion model to 
experimental data. Two multivariable nonlinear models are used to describe the nonlinear forced 
roll motion of a ship at sea. One, more traditional model, is based on ordinary differential equations 
(Soliman & Thompson, 1991), and the other on fractional differential equations (Spyrou, et al, 
2008), which introduced a fractional derivative term to present added hydrodynamic inertia and 
traditional damping terms. The neural network method is tested using both numerically simulated 
data and experimental data. It is shown that this method produced good results using either 
nonlinear model.  
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1. EQUATIONS OF MOTION 

1.1. Ordinary Differential Equation of 
Motion 

The rolling motion of a ship at sea could be 
mathematically modeled, at least 
approximately, by the following second-order 
ordinary, nonlinear differential equation of 
motion: 

( ) ( ) ( )I N K M tϕ ϕ ϕ+ + =&& &    (1) 

Here φ is the rolling angle of the ship, I is 
the total roll moment of inertia (including 
added moment of inertia), N ( )ϕ&  is the 
nonlinear damping moment which is a function 
of roll velocity, K(φ) is the nonlinear restoring 

moment which is a function of roll angle, and 
M(t) is the roll excitation moment. A dot over 
the variable φ indicates differentiation with 
respect to time. 

By dividing equation (1) by the roll 
moment of inertia I, we obtain  

( ) ( ) ( )B C F tϕ ϕ ϕ+ + =&& &    (2) 

where B=N/I, C=K/I, F=M/I. 

For the damping moment per unit virtual 
moment of inertia of the ship, Dalzell (1978) 
showed that the linear-plus-cubic is quite 
reasonable approximation form for large 
amplitude roll, 

3
1 3( )B b bϕ ϕ ϕ= +& & &      (3) 
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where b1 and b3 are the linear and nonlinear 
damping coefficients respecti-vely.  

A parametric form of the hydrostatic 
restoring moment per unit virtual moment of 
inertia of the ship, C can also be approximated 
by linear-plus-cubic model for large angle of 
roll (Haddara, 1984), 

3
1 3( )C c cϕ ϕ ϕ= +        (4) 

where c1 and c3 are the linear and cubic 
stiffness coefficients respectively.  

The exciting moment per unit virtual 
moment of inertia of the ship is assumed in the 
following form 

0( ) sin( )eF t f t f0ω φ= + +       (5) 

where f0 is a constant moment due to some 
mean bias (wind, loading, etc…), 0φ  is a phase 
angle, ωe is the encounter frequency of the 
exciting moment. 

On combining equations (2) to (5), the 
parametric form of the ordinary differe-ntial 
equation of rolling motion is 

3 3
1 3 1 3

0 0sin( )e
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f t f
ϕ ϕ ϕ ϕ ϕ

ω φ
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&& & & =
  (6) 

1.2 Fractional Differential Equation of 
Motion 

We also use a novel model of ship roll 
similar to that proposed in Spyrou et al. (2008), 
which is a fractional differential equation (7). 
Added hydrodynamic moment of inertia and 
potential damping were accounted through a 
single fractional derivative of the roll angle φ. 
(Spyrou et al., 2008).  

3
1 3

0 0sin( )

a

e

bD c c
f t f
ϕ ϕ ϕ ϕ

ω φ
+ + +

+ +

&&

where Daφ indicates a fractional derivative of 
the roll angle φ where a is the fractional 
derivative order between 1 and 2.  

2. IDENTIFICATION OF 
COEFFICIENTS USING A 
SPECIALIZED NEURAL NETWORKS 
SYSTEM 

The neural network is very useful to deal 
with non-linear dynamical systems with 
unknown non-linearities (Youlal et al., 1994). 
In this research, a specialized Neural Networks 
system has been introduced and applied to 
identification of the parameters of the two 
models to best fit the simulated data and 
experimental-/real data.  

Figure 1 shows the specialized neural 
networks control system in which the equations 
of ship rolling motion are mapped into ‘plant’ 
as a part of the neural networks system. The 
input vector is time history of roll angle and 
roll velocity. The output vector is also time 
history of estimated roll angle and roll velocity. 
The learning schemes use the error (Equation 8) 
between the past inputs and outputs of the plant 
to identify and to adapt the plant inverse model.  

 
Figure 1. A simplified bloc diagram of the 
specified neural networks structure.  

 
=

  (7) 
Figure 2. Structure of the Back-Propagation 
Neural Networks Controller. 
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Figure2 shows the structure of the BP-
Controller for the ODE given in Equation 6. 
The specific structure of neural networks we 
consider herein consists of only two hidden 
layers with sigmoid type neurons where 
neurons inter-connections occur only between 
adjacent layers. The number of neurons in the 
hidden layer is dependent on the number of 
input data, and the number of neurons in the 
output layer equals the number of parameters in 
the rolling equations. One neuron from the 
inputs to the first layer and one neuron from 
the hidden layer to the output layer have been 
set to 1 in order to add a constant bias to the 
weighted sum. The weights of the neural 
networks are trained by the gradient steepest 
descent algorithm such that the error between 
the past inputs and outputs of the plant 
approaches zero (Levin, Gewirtzman, and Inbar, 
1991). The logistic activation function was 
used at the inside of the hidden layer and the 
tangential activation function was at the inside 
of the output layer. Both of logistic function 
and tangential function are the continuous 
functions. The Delta learning rule was applied 
to reduce the error between objective and the 
estimated output values through a steepest 
descent gradient along the error surface (Huang, 
2004). 

The error function is 

21 €(
2 i i

i
E )ϕ ϕ= −∑          (8) 

To minimize E, the weight ωkj in the output 
layer should be adjusted in the direction of the 
maximum negative gradient of E, that is 
(Schiffmann & Geffers, 1993), 

kj
kj

Eω η
ω
∂

Δ = −
∂

        (9) 

where η is the learning rate. 

The momentum filtering term is 
recommended to apply too, which keeps the 
change of weights somewhat in the old update 

direction. So, from the hidden layer to the 
output layer, the weight adjustments are  

1 1

( 1) ( )

( )
( )

kj kj

kj
kj

t t

E t
t

ω ω

η α ω
ω

+ = −

∂
+

∂
�  (10) 

where η1 is the learning rate and α1 is a 
momentum factor affecting the change 

kj ( )tω�  of the network’s weights at the tth 
iteration.  This can help avoid oscillations in 
the proximity of a minimum and accelerate 
convergence when the gradient is very small in 
wide plateau (Schiffmann & Geffers, 1993).   
From the input layer to the hidden layer, the 
weight adjustments are given by Equation (11): 

2 2

( 1) ( )

( )
( )

ji ji

ji

t t

E t
t

ν ν

η α ν
ν

+ =

∂
− + Δ

∂
    (11) 

The weight matrices ω and ν are updated by 
these two formulas (10) and (11) after which a 
training cycle is complete (Schiffmann & 
Geffers, 1993). 

RESULTS OF SIMULATED DATA AND 
EXP-ERIMENTAL DATA 

3.1 Application to Numerically Simul-ated 
Data 

A rolling motion equation could be written 
as (Soliman & Thompson, 1991) 

1 2 1

3 3
2 3 4

5
5 sin( )

b b c

c c c

c F t

φ φ φ φ φ

φ φ φ φ φ

φ ω

+ + +

+ + +

+ =

&& & & &

   (12) 

where b1=0.0043, b2=0.0225, c1=0.384, 
c2=0.1296, c3=1.0368, c4=4.059, c5=2.4052, 
ω=0.527, F=0.0195.  For this case, 200s are 
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simulated with roll and roll velocity initial 
conditions both equal to zero. MATLAB’s 
built-in “ode45” solver, which is the fourth-
order Runge-Kutta method, was used to solve 
equation (12) numerically in the time step 0.01 
second to obtain simulated data (Fig. 3). Part of 
the output time series of this equation was 
treated as though it was an unknown roll/roll 
velocity “experimental” data set, which was the 
input data set of the neural networks.  

The process is outlined as follows; the first 
20 seconds data of roll angle and roll velocity 
are used as training data for the proposed 
neural networks system with equation (6) 
mapped into the plant.  The initial conditions 
are set as 0φ =0, f0=0 and ωe=0.527 in equation 
(6), minimize the error of sum square of both 
roll angle ad roll velocity, obtain the estimated 
results b1=0.002576 b3=-0.004437, c1=0.3950, 
c3=0.6348, and f=0.01928. The tracks of 
estimating parameters and the error of sum 
square in 1000 iterations are shown in Figure 4. 
The comparisons of the objective values and 
estimated values of roll angle and roll velocity 
are shown in Figure 5. The prediction results 
are shown in Figure 6, where the data in red 
line before dash line are used in neural network 
system training to estimate the parameters, and 
the data in blue line after dash line are the 
predicted further 20 seconds results.  

 
Figure 3. Simulated Rolling Motion. 

 
Figure 4. The Track of Estimating Parameters 
and SSE. 

 

 
Figure 5. Results of Simulated Data. 

 

 
Figure 6. Prediction of Simulated Data. 

3.2 Application to experimental data  

Following the successful application to the 
numerical test case described above, the 
proposed neural networks method is then 
applied to analysis of experimental data for 
DTMB Hull 5514 dynamic stability tests 
detailed in Hayden et al, (2006). The model 
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tests are for a 1/46.6th scale notional destroyer 
in regular seas. Figure 7 gives an example of 
the experimental data. The portion of the data 
indicated in red was used for this study. 

3.2.1 Estimation results by ODE equation (6) 

Applying the ODE-based neural network 
approach described previously to this sample 
portion of data, the estimated values of the 
parameters in equation (6) are found as 
b1=0.003263, b3=0.0002442, c1=12.8620, 
c3=9.8709, f=0.4405, ωe=2.1252, φ0=−2.6272, 
and f0=0.9106. The comparisons of the real 
values and estimated values of roll angle and 
roll velocity by ODE equation (6) are shown in 
Figure 8. The tracks of the error of sum square 
in 400 iterations are shown in Figure 9. The 
minimum error shown in figure 9 was 0.4348 
using the ODE model for the sample data.  The 
tracks of estimating parameters are shown in 
Figure 10. 

 

Figure 7. One Example of Experimental Data. 

 

Figure 8. Results of Experimental Data by 
ODE 

 

Figure 9. The track of SSE by ODE. 

 

 

Figure 10. The track of estimating parameters 
in ODE. 

3.2.2 Estimation results by FDE equation (7) 

Applying the ODE-based neural network 
approach described previously to this sample 
portion of data, the estimated values of the 
parameters in FDE equation (7) are a=1.8772, 
b=0.4409, c1=21.6147, c3=17.8551, f=1.8308, 
ωe=3.4652, φ0=1.1971, and f0=1.6502. The 
comparisons of the real values and estimated 
values of roll angle and roll velocity by FDE 
equation (7) are shown in Figure 11. The tracks 
of the error of sum square in 900 iterations are 
shown in Figure 12. The minimum error shown 
in figure 12 was 0.2286 using the FDE model 
for the sample data. The tracks of estimating 
parameters are shown in Figure 13. 

Figure 14 shows prediction and comparison 
of the results of two models: fractional 
differential equation and ordinary differential 
equation. The red line shows real data; the blue 
line is the result of the model FDE, and the 
green line is the result of the 8 unknowns ODE. 
The data in red line before the dash line were 
used to training in the neural networks to 
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obtain the parameters values, and the data after 
the dash line were the next 1 second predicted 
result based on the estimated parameters of 
those equations.  

 

Figure 11. Results of Experimental Data by 
FDE. 

 

Figure 12. The track of SSE by FDE. 

 

Figure 13. The track of estimating parameters 
in FDE. 

 

Figure 14. Comparison of the results of two 
models. 

3. DISCUSSION AND CONCLUSION 

In the above, we have developed and 
described a scheme for the estimation of the 
parameters in an equivalent roll equation of 
motion using only the roll response (roll angle 
and roll velocity), which could be relatively 
easily obtained for a ship sailing at sea. It has 
been shown, using numerically simulated as 
well as experimental data, that the method 
produces good estimates for all relevant 
parameters including damping, restoring and 
exciting moment parameters. There are several 
advantages of this method by comparison to 
other existing methods in the literature. These 
advantages can be outlined as follow: 

1. The parameters in the equation of rolling 
motion are estimated using the roll 
response only. A priori knowledge of the 
input is not needed. This makes this method 
appealing for use on ships at sea for 
estimating equivalent instantaneous param-
eters values.  

2. All the parameters in the equation of 
motion, including the magnitude and phase 
of excitation, can be estimated using this 
method. This makes this method particu-
larly useful when simultaneous value for 
the excitation and the response for the 
excitation.  

3. There is no assumption for the external 
excitation. The method can be used to 
predict a ship roll motion in real sea.   

Tremendous successes have been seen 
using more traditional neural network based 
approaches (Hess, Faller, Fu and Ammeen 
2006; Kimura and Amagai 2003; Haddara and 
Hinchey 1995). The fundamental aim of this 
approach is to yield a physical equation with 
which one might then apply analytical 
approaches for rapid analysis of stability 
boundaries and/or couple with a neural network 
to determine an ideal reduced order model to fit 
the current vessel motion conditions. This latter 
aspect of future work would allow captains and 
handlers to not only have predictions of the 
future state of their vessel, but to also 
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understand the phenomena affecting their 
vessel. That is, rather than simply giving a 
captain a warning indication, one might be able 
to give a warning of a specific type of dynamic 
instability. This is all exciting future work to be 
studied. 

4. ACKNOWLEDGMENTS 

The authors gratefully acknowledge support 
of this research by Dr. Eduardo Misawa at the 
National Science Foundation under grant 
number CMMI-0747973 and Dr. Patrick 
Purtell at the Office of Naval Research under 
grant number N000140610551. 

5. REFERENCE 

Dalzell, J.F., 1978, “A note on the form of ship 
roll damping”, Journal of Ship Research, 
22(3), 178-185. 

Hayden, D.D., Bishop, R.C., Park, J.T. and 
Laverty, S.M., 2006, “Model 5514 capsize 
experiments representing the pre-contract 
DDG51 hull form at end of service life 
conditions”, NSWCCD-50-TR2006/020, 
Hydromechanics Department Report. 
Carderock Division, Naval Surface Warfare 
Center. 

Haddara, M.R. and Hinchey, M., 1995, “On the 
use of neural network techniques in the 
analysis of free roll decay curves”. 
International Shipbuilding Progress, Vol. 
42, No. 430, 166-178. 

Hess, D., Faller, W.E., Fu, T.C. and Ammeen, 
E.S., 2006 “Improved Simulation of Ship 
Maneuvers Using Recursive Neural 
Networks”, The 44th AIAA Aerospace 
Sciences Meeting, Reno, NV. AIAA-2006-
1481. 

Hess, D., Faller, W.E., Fu, T.C. and Ammeen, 
E.S., 2006, “Ship Maneuvering Simulation 
in Wind and Waves: A Nonlinear Time-

Domain Approach Using Recursive Neural 
Networks”, The 26th Symposium on Naval 
Hydrodynamics, Rome, Italy. 

Huang, S., Tan, K.K., & Tang, K.Z., 2004 
“Neural Network Control: Theory and 
Applications”. Research Studies Press LTD, 
ISBN 0-86380-285-0. 

Kimura, N., and Amagai, K., 2003) 
“Forecasting of Rolling Motion os small 
Fishing Vessels Under Fishing Operation 
Applying a Non-deterministic Method”, 
The 8th International Conference on the 
Stability of Ships and Ocean Vehicles, 633-
641. 

Levin, E., Gewirtzman, R., and Inbar, G.F., 
1991 “Neural Network Architecture for 
adaptive system modeling and control”, 
Neural Networks, 4, 185-191. 

Lloyd, A.R.J.M., 1989, “Seakeeping: ship 
behaviour in rough weather”. Ellis 
Horwood Limited, ISBN 0-7458-0230-3. 

McCue, L.S. and Campbell, B., 2007, 
“Approximation of ship equations of 
motion from time series data”, 9th 
International Ship Stability Workshop. 

Podlubny, I., 1999,  “Fractional differential 
equations”, Volume 198 in mathematics in 
science and engineering, Academic Press, 
ISBN 012-558840-2. 

Schiffmann, W.H., & Geffers, H.W., 1993 
“Adaptive control of dynamic systems by 
back propagation networks”. Neural 
Networks, Vol. 6, 517-524. 

Soliman, M. S., & Thompson, J. M. T., 1991, 
“Transient and steady state analysis of 
capsize phenomena”, Applied Ocean 
Research, 13(2). 

Spyrou, K.J., Niotis, S., & Panagopoulou, C., 
2008 “Novel modeling of ship rolling based 
on fractional calculus", The 6th OSAKA 



10th International Conference 
on Stability of Ships and Ocean Vehicles 

 
 
428 

colloquium on Seakeeping and Stability of 
Ships, (5)1-8 

Xing, Z. and Haddara, M.R., 2004 
“Identification of the variance of the wave 
exciting rolling moment using ship’s 
random response”, Oceanic Engineering 
International, 8 (1), 27-35. 

Youlal, H., Kada, A., Ramzi, M. and EI-ismaili, 
L., 1994, “Fast diagonal recurrent neural 
networks for identification and control of 
non-linear systems”, IEE CONTROL’94. 
Conference Publication, No.389, pp. 104-
109. 


