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ABSTRACT 

The current various proposals at IMO for the s factor (probability of surviving a given flooding) 
make no reference to survival time. The paper shows a direct link of the 'prime' s factor with the 
time to capsize and shows how to utilise experimental data from 30-minute test runs for the s factor 
based on longer duration of tests. Unexpectedly, the extension of tests has a modest effect on the 
survival factor, and hence – modest effect on subdivision index A. Much more important is improv-
ing a deficient formulation for the required index R, as flooding cases with si = 1 have an infinite 
survival time.` 
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1. INTRODUCTION 

The factor s is understood as the conditional 
probability of surviving a given flooding due to 
collision damage with sufficient survival time, 
assumed to be 30 minutes during the original 
research, related to the static equivalency method 
(SEM). This method was developed in 1995 in 
the wake of the sinking of “Estonia” for ro–ro 
vessels with the large open main deck (vehicle 
deck). The method evolved from research carried 
out at Strathclyde University (Vassalos 1996, 
and 1997) based on a framework presented ear-
lier by Pawłowski (1995). 

The current various proposals at IMO for the 
s factor make no reference to survival time, 
which is a serious drawback. Nowadays suffi-
cient survival time is considered to be 3 hours. 
Hence a question arises, if the s factor, based on 
half-an-hour duration of tests, is still valid for 
regulatory purposes. The answer to this question 
is provided below. The analysis of the problem 
is not that easy, as survival time is a random 
quantity. 

2. SURVIVAL TIME 

In spite of the complexity, probability den-
sity function (pdf) of survival time can be rela-
tively easily derived recalling the basic prob-
ability theory. For that we shall consider ex-
periments with a damaged ship lasting an in-
definite time whose duration time has been di-
vided into 30-minute segments. It is reasonable 
to assume that probability of surviving in each 
segment is the same and equals P. This prob-
ability could vary only in case of progressive 
flooding. Such a sequence of tests, with a con-
stant probability in each trial, is termed as a 
Bernoulli trial process. 

Probability P is a prime s factor and for a 
given damage scenario and loading condition is a 
function of sea states in terms of the significant 
wave height Hs. The quantity 1− P then repre-
sents probability of capsizing, identical with 
CDF of critical sea states. The random nature of 
the critical sea states comes from the random 
nature of water elevation on the vehicle deck, 
discussed by Pawłowski (2003). Probability P 
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varies across the capsize band from a value 1 at 
the lower boundary to zero at the upper bound-
ary of the capsize band (uncertain zone), see 
Figure 1. Above the upper boundary there is an 
unsafe region with a 100% of capsizal, where 
the time to capsize, termed also as the survival 
time, is in minutes and reduces to seconds, 
when the sea state becomes higher. Below the 
lower boundary a safe region stretches with a 
100% of survival (no capsizal), where survival 
time is infinite. It is noteworthy that all tests 
before 1995 failed to identify the existence of 
the capsize band. 

If probability of surviving one segment is 
P, probability of surviving n segments is given 
by: 

F = Pn, (1)

where n = t/t0, t is time (in minutes) measured 
from the completion of flooding, and t0 = 30 
minutes. During the first half an hour segment 
p1 = 1– P ships capsize, during the second seg-
ment p2 = P2–P = P(1–P) ships capsize, during 
the third one p3 = P3–P2 = P2(1–P), and so on. 
Probability of capsizing after n segments equals 
obviously 1–Pn. This is identical with the CDF, 
shown in Figure 2 for P = 0.4 and 0.8, since Σpk 
for the first n consecutive segments equals 1− Pn.  
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Figure 1. Definition of capsize band and survival boundaries for given flooding versus height 

of the centre of gravity (for a passenger vessel investigated in the Harder project). 

Figure 2. CDF for survival (capsizal) time. 

The curves in Figure 2 are broken (seg-
mented) instead of stepwise, as probability of 
capsizal in each segment is uniformly distrib-
uted. Probability density functions correspond-
ing to these CDFs are therefore histograms, 
shown in Figure 3, that agree very well with 
those obtained from experiments. The fraction 
of capsized ships in consecutive segments equals 
pk = Pk –1(1– P). Mass probabilities related to 
these segments form a geometric sequence with 
the ratio P. 

Knowing the frequency of ships that cap-
sized in each segment the average time of cap-



10th International Conference 
on Stability of Ships and Ocean Vehicles 

 
 

 

247

A stepwise distribution of survival (cap-
sizal) time can be easily approximated by a 
continuous distribution of the non-dimensional 
variable x = t/t0, as clearly seen in Figure 2. 
The CDF in terms of x, denoted by F, is ob-
tained simply replacing n by x. Therefore, 

sizal (survival) can be calculated. Assuming 
that capsizing is equally distributed over each 
segment, the mean survival (capsizal) time is 
given by the following expression: 

ts = 15 (p1+3p2+5p3 + …) = 15Σ(2n −1)pn, 

with pn = Pn–1(1–P), where the summation is 
taken from n = 1 to infinity. After performing 
simple mathematics, shown by Pawłowski (2004 
and 2007), the following expression results for 
the mean survival (capsizal) time: 

(min) 
P
Pts −

+
⋅=
1
115 , (2)

The higher the probability of survival P, the 
higher the mean survival time is, clearly seen 
also in Figure 2 and Figure 3, providing more 
time for evacuation. The mean survival time in 
Figure 2 equals area above the CDF up to the 
asymptote, whereas in Figure 3 equals the cen-
tre of gravity of area under the pdf. If P ap-
proaches 1, survival time tends to infinity, 
which agrees with common sense. Table 1 pro-
vides values of the mean survival time ts as 
function of P, based on equation (2). 
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Figure 3. Distribution of probability for cap-
sized ships and its analytic approximation. 

F = 1 − Px = 1− exlnP = 1− e−λx. 

where λ = −lnP . Differentiating F relative to x 
yields the pdf. We then get for the pdf the ex-
ponential law of distribution: 

f = λe−λx. (3)

As can be seen in Figure 3, the continuous 
pdf for capsizal time passes through midpoints 
of individual segments, smoothing the histo-
gram. 

The mean non-dimensional survival (cap-
sizal) time xs = ts /t0 related to the exponential 
distribution of capsizal is given by the integral: 

xs = ∫ 0

∞
x f(x)dx = λ∫ 0

∞
x e−λxdx = 1/λ. 

Hence, 

ts = t0 /λ = −t0 /lnP . (4)

Making use of a very handy approximation 
for the natural logarithm: lnP ≈ 2(P−1)/(P+1), 
equation (4) becomes identical to equation (2). 

3. THE CONDITIONAL PROBABILITY 
OF SURVIVAL 

As the sea state Hs at moment of collision is 
random (unknown beforehand), the resultant 
probability s that a ship with given loading 

Table 1. Mean survival time ts (in minutes) versus the prime s factor P. 

P 1/3 0.4 0.5 0.6 2/3 0.7 3/4 7/9 0.8 0.85 

ts 30 35 45 60 75 85 105 120 135 185 
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condition (KG-value) and compartment flooded 
will not capsize after damage within 30 min-
utes can be obtained by averaging the prime 
survival factor P = P(Hs) with respect to sea 
states at the moment of collision: 

s = E(P) = ∫Hs
P(Hs) fc(Hs)dHs, (5)

which follows from the Bayes theorem for total 
probability, where P(Hs) is the probability of sur-
vival during 30 minutes at given loading condi-
tion and compartment flooded, and fc (Hs) is the 
probability density function of sea states at the 
moment of collision. Integration in equation (5) 
takes place across the capsize band (vertically in 
Figure 1) from the lower to the upper boundary. 
Outside the capsize band the integrand vanishes. 
The probability of surviving P starts with a value 
1 at the lower bound of Hs at the uncertain zone 
and terminates with a value of zero at the upper 
bound (see Figure 1). That is to say, the prob-
ability P(Hs) monotonically decreases across 
the capsize band. Hence, P(Hs) = 1– F(Hs) is 
the tail of CDF for the critical sea states. 

Applying integration by parts in equation 
(5), the following is obtained: 

s = PFc⏐0

∞
 + ∫Hs

Fc(Hs) f(Hs)dHs, (6)

since P' = − f(Hs). The first term vanishes and 
we get eventually 

s = ∫Hs
Fc(Hs) f(Hs)dHs. (7)

Equation (7) has a similar structure as equa-
tion (5). However, in the latter the resultant 
factor s is expressed by averaging the CDF of 
sea states at the moment of collision with respect 
to critical sea sates, whereas in the former – 
vice versa – the elementary factor s is averaged 
with respect to sea states at the moment of colli-
sion. By virtue of the mean value theorem inte-
gral (7) equals Fc, taken at a certain point, de-
noted by Hsm, somewhere inside the range of 
integration. That is to say, the resultant factor s 
equals the probability that the sea state at the 

moment of collision will not exceed some mean 
value of the critical sea states for given loading 
condition and damage scenario. The quantity 
Hsm need not necessarily be identical with the 
expected (mean or average) value of the critical 
sea states but none the less it is very close to it. 

The mean critical sea state can be easily de-
fined if the function P(Hs) is known – it simply 
equals the area under this curve. However, the 
mean critical Hs has to be defined during model 
tests, which is virtually impossible to do. In 
such a case it is far more convenient to replace 
it by a median value. That is, the critical sea 
state (or the critical KG-value) is defined as 
such in which in 50% of runs the ship capsizes 
and in 50% survives. In routine calculations the 
critical median sea state is obtained from the 
SEM, as discussed by Pawłowski (2004), and 
Vassalos (1996 and 1997). 

The averaging process in equation (7) can 
be done in a more direct way. The function 
Fc(Hs) can be expanded into a Taylor's series 
around Hs m – the mean value of the critical sea 
state, unknown beforehand. Taking three terms 
of this expansion, we get 

s = ∫Hs
[Fc + fc(Hs − Hs m) +  

 ½ fc' (Hs − Hs m)2] f(Hs)dHs, 

where Fc, fc, and fc'  are calculated at Hs = Hs m. 
The above yields then 

s = Fc(Hs m) + ½ fc' V(Hs), (8)

as the second term vanishes by definition, where 
V(Hs) is the variance of the critical sea states. 
Since fc'  = Fc'' is negative, the resultant s factor 
is therefore somewhat smaller than Fc(Hs m). 
Further, since the median value for asymmetrical 
distributions is somewhat smaller than the mean 
value, therefore for the sake of simplicity it can 
be taken eventually that 

s = Fc(Hs = Hs 50%). (9)
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For example, for a triangular distribution, 
the mean value is ⅓ of the extension, whereas 
the median equals (1− √ 0.5) = 0.29 of the exten-
sion. Some degree of approximation is justi-
fied, as the CDF of sea states at the moment of 
collision, shown in Figure 4, is known with a 
limited accuracy. Bearing this in mind, the de-
tailed run of the prime s factor – the function 
P(Hs) is not very necessary, since what is 
needed for the calculation of the resultant s fac-
tor is the knowledge of the median value of 
critical sea states Hs 50%. 

Equation (9) says that having determined 
(by physical model tests or numerical simula-
tions) the critical sea state Hs 50% for given 
damage case and loading condition (KG-value), 
the resultant factor s = Fc(Hs 50%), essential for 
the probabilistic subdivision regulations, can be 
obtained from the CDF of sea states occurring 
at the moment of collision Fc  = Fc(Hs). This 
factor simply equals the probability that the 
mean critical significant wave height, taken as 
the median Hs 50%, is not exceeded at the mo-
ment of collision. For this purpose, it is suffi-
cient to use the sea state distribution proposed 
by IMO, as shown in Figure 4, yielding s > 0.3. 
Approximations of the said distribution can be 
found in Pawłowski (2004, and 2007). In rou-
tine calculations, the critical sea state Hs 50% 
(with a 50% protection) provides the SEM. 
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Figure 4. IMO distribution of sea states occur-
ring at the moment of collision. 

It is noteworthy that the distribution of sea 
states at the moment of collision is different 
from the distribution obtained from regular 
weather statistics. In a large majority of cases, 

collisions happen in the proximity of ports, in 
confined waters and in fog, typically associated 
with calm weather. It is understandable that in 
such circumstances sea states are on the whole 
lower than at the open sea or under normal op-
erating conditions, and – because of that – 
probably not much different for various sea re-
gions. If the sea state distributions do differ for 
certain regions, this would provide space for 
regional deviation in formulae for the s factor. 

4. ACCOUNTING FOR A LONGER 
SURVIVAL TIME 

In the previous section it has been shown 
how to derive the s factor based on 30-minute 
tests. That is to say, such a factor provides 
probability of surviving given flooding at given 
loading condition with a minimum survival 
time equal to 30 minutes. 

If probability of surviving over 30 minutes, 
denoted by P, is known, then probability of 
surviving one hour equals P2, as argued in sec-
tion 2. Hence, the factor s corresponding to 
survival time equal to at least one hour is ob-
tained by averaging P2 over the sea states at 
moment of collision. Therefore: 

s = E(P2) = ∫Hs
P2 fc(Hs)dHs. (10)

Applying as before integration by parts, the 
following is obtained: 

s = −∫Hs
Fc(Hs)(P2)'dHs = ∫ 0

1 Fc(P) d(P2), (11)

where ' means differentiation with respect to 
Hs, and P = 1 − F(Hs) is the tail of CDF for the 
critical sea states. At the second identity the 
function Fc(Hs)  becomes Fc(P), as Hs = Hs(P). 
The function s is positive, as (P2)'  = 2PP' is 
negative, yet better seen at the second identity. 
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Figure 5. Probability of surviving P (top) and 
the function Fc versus P (bottom). 

A typical run of the function Fc(P) is shown 
in Figure 5; its detailed run depends on the run 
of probability of surviving P over the capsize 
band and the function Fc(Hs) – distribution of 
sea states at moment of collision. As can be 
seen, the function Fc(P) monotonically decreases 
from a value Fc taken for the lower boundary of 
the capsize band (here 2 m) at P = 0, to a value 
Fc taken for the upper boundary of the capsize 
band (here 3 m) at P = 1. 

To abbreviate transformations of equation 
(11), it is worth reinterpreting equation (7) and 
noticing it can be written in the form: 

s = ∫ 0

1 Fc(P)dP. 

The above represents mean height of the area 
under the graph shown in Figure 5, which 
roughly equals a value at P = ½. Therefore, s = 
Fc(Hs = Hs 50%), which agrees with equation (9). 
In other words, the mean value theorem says 
that the factor s equals Fc (i.e. CDF for sea states 
at the moment of collision) calculated for such 
a sea state Hs for which P = ½. Applying this 
theorem again to equation (11) we immediately 
get that the factor s equals Fc calculated for the 
sea state Hs for which P2 = ½. This gives P = 
√0.5 ≈ 0.71. Therefore, 

s = Fc(Hs = Hs 71%), (12)

where Hs 71% denotes the sea state with a 71% 
protection. In other words, Hs 71% is the median 
sea state for one-hour tests. 

The above can be easily generalised. The 
factor s corresponding to survival time equal to 
at least n half an hour segments is obtained by 
averaging Pn over the sea states at moment of 
collision. Therefore: 

s = E(Pn) = ∫Hs
Pnfc(Hs)dHs = 

   ∫ 0

1 Fc(P) d(Pn), 
(13)

which yields 

s = Fc(Hs = Hs p), (14)

where Hs p is the sea state with a protection p = 
0.51/n or – in other words – the median value for 
n half-hour tests. Table 2 provides these values 
for various duration of tests in terms of quantiles 
for 30-minute tests. 

Table 2   Median values for various duration of 
tests 
 one-hour runs ............ P = 0.51/2 = 0.71 
 1.5 hour runs ............ P = 0.51/3 = 0.79 
 two-hour runs ............ P = 0.51/4 = 0.84 
 2.5 hour runs ............. P = 0.51/5 = 0.87 
 three hour runs .......... P = 0.51/6 = 0.89 
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The aforementioned considerations can be 
neatly summarised. The s factor based on n times 
longer tests than the routine half-hour tests, de-
noted by s(n), equals 

s(n) = Fc(Hs = Hs 0.51/n). (15)

For example, s(3) = Fc(Hs 79%), s(4) = 
Fc(Hs 84%), s(6) = Fc(Hs 89%), and so on. To calcu-
late them we need to know corresponding quan-
tiles of the critical sea states. SEM, however, 
provides only one of them – the median value 
Hs 50%. How to get the other is briefly discussed 
by Pawłowski (2004 and 2007). 

The above observations can be strengthen 
by the observation that equation (13) is the 
mean height of the area under a graph of the 
function Fc(P)  made against Pn. As can be seen 
from Figure 6, the mean height approximates 
well by a value at Pn = ½. 
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Figure 6. 

We can see unexpectedly that the extension 
of survival time has no more than a modest ef-
fect on the survival factor, and hence – a mod-
est effect on subdivision index A. Extending 
time merely causes a shift from Hs 50% to higher 
quantiles of the critical sea states when making 
readings from the CDF of sea states at the mo-
ment of collision for the factor s. The said shift 
is obviously towards smaller sea states (see 
Figure 1), therefore the factor s drops. Changes, 
however, are not dramatic, except cases with 

poor stability (see Figure 4), with low critical 
sea states. In the extreme, the shift can be of 
the order 0.5 m. Irrespective of the definition a 
minimum value of s = 0.3, if IMO distribution 
of the sea states is used. 

It is worth mentioning that s(n) ≡ E(Pn) is 
not equal to s(1)

n, as one could think in the first 
moment, since E(Pn) > [E(P)]n. The difference 
occurs for partial surviving factors, when the 
range of sea states at the moment of collision 
comprise for given KG-value the entire capsize 
band, that is, when Hs for the upper boundary 
of the capsize band is smaller than 4 m. Taking 
s(n) = s(1)

n, where s(1) is the current ‘half-hour’ s 
factor, leads in such cases to a large underesti-
mation of the surviving factor. The two quanti-
ties equal each other, when the entire range of 
integration in equation (13) lies above 4 m (i.e., 
above the highest sea state that can occur at the 
moment of collision) or for the ship with mar-
ginal stability. In the two extreme situation the 
factor s = 0.3 or 1. It assumes zero only when 
the ship is unable to reach the final stage of 
flooding, either due to sinking or capsizing be-
fore the completion of flooding. 

5. CONCLUSIONS 

We can conclude that at the end of the day 
what matters for the safety of the ship is not so 
much the survival time used for definition of 
the s factor but the probability of surviving a 
potential collision by the ship, termed as the in-
dex of subdivision A. The level of the index re-
quired by the current regulations should be sig-
nificantly increased, as demonstrated by 
Pawłowski (2005). The recently adopted formu-
lation for R demonstrates lack of real under-
standing of what the probabilistic framework 
was meant to provide and, therefore, out of 
touch with reality. 
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