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ABSTRACT  

The probability of capsizing for a dynamical system with time-varying piecewise linear stiffness 
is presented. The simplest case is considered, in which only the angle of the maximum of the 
restoring curve is changing. These changes are assumed to be dependent on wave excitation; such a 
system can be considered as a primitive model of a ship in beam seas, where all changes in stability 
are caused by heave motions. A split-time approach is used, in which capsizing is considered as a 
sequence of two random events: upcrossing through a certain threshold (non-rare problem) and 
capsizing after upcrossing (rare problem). To reflect the time-varying stability, a critical roll rate is 
introduced as a stochastic process defined at any instant of time. Capsizing is then associated with 
an upcrossing when the instantaneous roll rate exceeds the critical roll rate defined for the instant of 
upcrossing. A self-consistency check of the method, in which a statistical frequency of capsizing 
was obtained by time-domain evaluation of the response of the piecewise linear dynamical system 
and favorably compared with the theoretical prediction is described.  
 
Keywords: probability of capsizing, split-time method, piecewise-linear.  
 
1. INTRODUCTION 

The calculation of the probability of 
capsizing for an intact ship in irregular seas is a 
formidable task, first of all because capsizing is 
an extremely rare event. Capsizing is also an 
extremely nonlinear phenomenon; it is, 
essentially, a transition from motion near a 
stable equilibrium to stable equilibrium. The 
combination of nonlinearity and rarity severely 
limits the set of available methods that can be 
applied to capsizing. A number of methods are 
available to treat rare events: in fact, the entire 
statistics of extremes is essentially focused on 
rarity (see for example Gumbel, 1962). These 
methods are based on the asymptotic properties 
of the tails of probability distributions and 
essentially rely on an extrapolation of the 
observed data.  

The behavior of a nonlinear dynamical 
system under deterministic excitation has been 
addressed in a quite comprehensive manner 
(see for example Guckenheimer & Holms, 
1983). The essence of the nonlinearity of roll 
motion is that the physics of the dynamical 
system changes with roll, leading to 
phenomena that are impossible for a linear 
system. The nonlinear qualities of roll motion 
have been the subject of study within the 
stability community for decades making, and 
an important part of program of the STAB 
conferences since 1975. 

The change of the physical properties of the 
dynamical system makes the direct application 
of statistical extrapolation difficult as the 
probability may change along with the physics. 
This positions the probability of capsizing 
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among the very special problems of stochastic 
dynamics — a very wide discipline stretching 
from mathematics (Arnold, 1998) to applied 
mechanics (cf. Roberts & Spanos, 2003). 

As it is the combination of severe 
nonlinearity and extreme rarity that makes the 
problem so difficult, it seems natural to 
separate it in two problems and consider 
dynamics separately from probability. This 
approach was used by Themelis & Spyrou 
(2007) and Umeda, et al. (2007) for different 
scenarios of capsizing. The complex nonlinear 
behavior was considered with a sinusoidal 
wave or a deterministic wave group and 
probability of encounter was then evaluated 
using oceanographic statistics. Further 
development of this approach seems quite 
promising, especially with the consideration of 
its application with model tests (Bassler, et al., 
2009). 

The piecewise linear approach (Belenky, 
1993; Paroka, et al., 2006; Paroka & Umeda 
2006) represents another way to separate the 
problem. Since the change of physics presents 
the most significant problem, the separation of 
the problem comes at the points where the 
physics changes. These are the peaks of the roll 
righting arm (GZ) curve, which plays the role 
of the stiffness of the dynamical system. With 
even a linear approximation for the GZ curve 

in each range, it is possible to preserve the 
topology of phase plane (see Figure 1) and 
therefore to reflect the most important physical 
properties of roll motion. 

Once the problem is separated, different 
solutions can be built for the first two ranges. 
The two solutions are connected at the 
separation point through initial conditions. The 
main advantage of the piecewise linear method 
for the problem of ship roll is that closed-form 
solutions can be presented for both ranges 
(Belenky, 1993). It should be noted, however, 
that any problem with a piecewise linear 
stiffness term does not necessarily have a 
closed-form solution.  

While the ordinary differential equation for 
roll with piecewise linear stiffness has been 
shown to capture the key physical phenomena 
of nonlinear roll motion including capsizing, it 
is hardly a complete model for a ship rolling in 
waves. However, the piecewise linear system 
provides a theoretical model for studying 
nonlinear roll and building a bridge to a 
practical analysis method involving more 
complete models of roll. 

With the development of sophisticated 
methods and tools for numerical simulations of 
ship motions (Beck and Reed, 2001), the 
numerical analog of the piecewise linear 
method seems to be the logical next step. The 
split-time method described by Belenky, et al. 

φ 

GZ 
φv π 

φ&  

φ 

Range 0 Range 1 Range 2 

)(φ∗f  

φm0 
φm1 

Figure 1. Phase plane topology and
piecewise linear stiffness (Belenky, 1993). 
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Figure 2. Summary of time-split method:
separation principle and critical roll rate. 
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(2008) is just such a method. It is a direct 
generalization of piecewise linear method 
allowing the application of hydrodynamic 
simulation codes instead of linear ordinary 
differential equations. The key elements of 
method are illustrated in Figure 2.  

As shown in Figure 2, capsizing is 
considered as an upcrossing of a threshold roll 
angle leading to the transition to another stable 
equilibrium. The first part of the method is the 
solution of a “non-rare” problem that provides 
enough roll motion data for the upcrossing 
probability to be evaluated. The second part is 
the solution of a “rare” problem, which consists 
of a series of short simulations starting at the 
threshold level, and is aimed at finding the 
“critical” roll rate at upcrossing that will lead to 
capsizing (see Figure 2 insert). The capsizing 
probability can then be evaluated as the 
probability of upcrossing with a roll rate 
exceeding the “critical” value. 

In the initial development of the piecewise 
linear model of roll and its numerical 
application as the split-time method, the 
separation of the problem has assumed that the 
stiffness (GZ curve) was constant with time.  
The next step in the development of an 
approach is to consider changes of stiffness as 
the ship moves in waves.  In order to provide a 
sound theoretical background for the 
development of this approach, it is first 
desirable to consider the solution of the basic 
piecewise linear method if the stiffness is 
random. 

2. DYNAMICAL SYSTEM 

Consider a dynamical system incorporating 
a piecewise linear restoring (stiffness) term 
with a random time-dependent decreasing part. 
The decreasing part, however, remains parallel 
to itself all the time, see Figure 3. Such a 
scheme is necessary to keep a linear relation 
and therefore normality throughout the 
problem. The stiffness term, indeed, is 
represented as a function of two variables, the 

roll angle and time; a surface illustrating such a 
function is shown in Figure 4. 
 

f*(φ) 

 

 

 

 

 

Values with zero in a subscript (e.g. φm0) 
are related to “calm-water” terms. The time-
varying decreasing part of stiffness is assumed 
to be dependent on the heave motion only. 
While this model, as a whole, hardly describes 
the motion of a ship, even in beam seas, it 
nevertheless still possesses the key 
characteristics of the change of stability with 
ship motion. 
 
 
 
 
 
 
 
 
 
 
 
 

The value of angle of maximum of the GZ 
curve is assumed to have the following form.  

( )( dd
m

m bdtkt ++ζ
ω

)φ
=φ )()( 2

0

0 . (1) 

Here ω0 is natural frequency of roll in calm 
water, φm0 is the initial boundary between two 
linear segments of the piecewise linear stiffness 
term (the angle of maximum of the GZ curve in 
calm water), d is the draft, ζ is the heave 
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Figure 3. Piecewise linear stiffness term 
with time-varying decreasing part. 
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Figure 4. Piecewise linear stiffness term with 
time-varying decreasing part as a surface. 
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displacement, and kd and bd are linear fit 
coefficients, see Figure 5. 
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Figure 5. Dependence of square of natural 
frequency of roll on draft for a schematic ship 
(see the inset). 

The entire piecewise linear stiffness term is 
expressed as: 
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where linear coefficients k1 and b1 are 
calculated as follows: 
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The dynamical system is described by two 
ordinary differential equations: 

  (4) 
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Here fEφ and fEζ are stationary ergodic 
stochastic processes describing wave 
excitation. The coupling between the equations 
is realized only through the stiffness term in the 
roll equation, and there is no influence of roll 
on heave. 

3. NON-RARE PROBLEM 

The objective of the non-rare problem is the 
evaluation of the probability of upcrossing the 

threshold roll angle, which is now changing 
with time. Below the threshold, the equations 
become decoupled and the solution for roll and 
heave are trivial: 

  (5) 
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Here ωi is the frequency of the components; 
φai and ζai are roll and heave component 
amplitudes; ϕi are random phases; and γφi and 
γζi are roll and heave phase shifts respectively. 
These components can be calculated in the 
frequency domain without difficulty. 

Similar expression can be written for the 
time history of the angle of the maximum of 
the GZ curve: 
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As the relation between the angle of the 
um and the heave motion is assumed to 

be deterministic and linear, the phases of the 
maximum are identical to those of heave 
motions. To identify the transition to rare 
problem, it is convenient to introduce a so-
called “carrier” process representing an 
instantaneous difference between maximum 
and instantaneous roll angles: 

maxim

 0)()()( mm tttx φ+φ−φ= . (7) 

The transition to the rare problem can be 
now associated with the upcrossing of the level 
of the angle of maximum restoring in calm 
water by the carrier process. A time history of 
the carrier process can be expressed in a form 
of the Fourier series: 

∑
ω

=
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N

i
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1
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The amplitudes xai and phases γxi of the 
carrier process can be evaluated trivially as the 
roll and angle of maximum are presented with 
Fourier series containing the same frequency 
discertization: 

)sin(222
iiaimaiaimaiaix ζφ γ−γφφ+φ+φ=  (9) 

imaiiai

imaiiai
xi

ζφ
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−=γ
cossin
sincos

arctan . (10) 

The carrier process x(t) is differentiable; its 
derivative is expressed as: 

∑
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The probability of upcrossing of the level 
φm0 by the carrier process then can be 
calculated as (assuming applicability of 
Poisson flow): 

)exp(1)( TTPU ξ−−= . (12) 

With the upcrossing rate equal to: 
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where the variance of the carrier, xV , and its 
derivative, x , can be derived from their 
Fourier presentations: 
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4. RARE PROBLEM 

4.1. Equation for Rare Problem 

The substance of the rare problem is the 
characterization of the roll motion after an 
upcrossing occurs and the evaluation of the 
probability of capsizing after upcrossing. 

Consider the roll equation (4) for the post-
upcrossing range (|| φ )tm≥φ  after substitution 
of the time dependent stiffness (3): 

.
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 (15) 

Equation (15) describes a dynamical system 
with a repelling force; following the usual 
assumption for the rare solution with a 
piecewise-linear system (Belenky, et al., 2008), 
the influence of wave excitation is neglected. 
The influence of the time-variant stiffness 
expressed by the term kb )(tζ  will be kept in the 
solution. 

011 )(2 vb ktkk φ+ζ=φ+φδ+φ &&& . (16) 

As will be seen in the subsequent analysis, 
neglecting the influence of excitation no longer 
provides a significant simplification.  

Expression (16) is an ordinary linear 
heterogeneous differential equation with a 
constant coefficient, allowing a close-form 
solution. Its total solution consists of the 
general solution of the homogeneous equation 
and a particular solution of the original 
heterogeneous equation. 

)()()( ttt GH φ+φ=φ . (17) 

The solution of the homogeneous equation 
is: 

)exp()exp()( 21 tBtAtH λ+λ=φ . (18) 

The constants A and B depend on initial 
conditions and will be defined later; the 
eigenvalues are 

1
2

2,1 k−δ±δ−=λ  (19) 

The particular solution must be similar to 
excitation; i.e. a sum of the heave motions plus 
a constant: 
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The components of the particular solutions 
are defined in the usual way for a linear 
equation: 
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The arbitrary constants then can be 
expressed as: 
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Here φ1 and  are initial conditions while 
p1 and  are the values of the particular 
solution (20) and its derivative at the initial 
instant t1. The initial instant is essentially the 
upcrossing instant, so: 

1φ&
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 )  (24) ( 11 tmφ=φ

The complete general solution and its first 
derivative are 

021 )()exp()exp()( vtptBtAt φ++λ+λ=φ  (25) 
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4.2. Process of Critical Roll Rate 

It is now necessary to introduce the concept 
of the critical roll rate, φ , which is defined as 
the value of the initial roll rate at the up-
crossing of the first threshold , which leads 
to crossing of the 2nd threshold and therefore 
capsizing. For every given instant of time and 
set of initial phases ϕi, there is a pair of initial 

conditions, , that deterministically 
lead to having the roll angle reach the second 
threshold, φm1, beyond which the ship will 
capsize. It can be directly concluded from this 
definition that the critical roll rate is a 
stochastic process taking different values at 
different instant of time; it is also different for 
different realizations at the same instant of 
time. 
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The critical roll rate can be calculated 
numerically by an iterative algorithm, as 
described in (Belenky, et al., 2008). 

Alternatively, the critical roll rate can be 
calculated from the condition: 

 0 . (27) (A

Equation (27) can be solved using formula 
(22); for any instant of time, t, 

( ) )()()( 0 tptptcr && +−λ=φ )(2 t vm φ−φ . (28) 

Thus, the critical roll rate is a stochastic 
process defined at any instant of time. As 
formula (28) represents a linear combination of 
three normal processes, the distribution of roll 
rates is normal as well. The process of critical 
roll rate can then be presented in the form of a 
Fourier series. Technically, it is convenient to 
calculate the difference between the first two 
processes and then add the third one. Consider 
an auxiliary process w(t) defined by the 
following formula: 
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This process is presented using a Fourier 
series as follows: 
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The amplitudes of the components of the 
auxiliary process w are expressed as: 
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The phase shift for the auxiliary process, w, 
is expressed as: 
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The process of critical roll rates is now 
expressed as a simple sum of the auxiliary 
process, w, and the derivative of the particular 
solution, : 1p&
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The process can be presented in the form of 
a Fourier series 
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The components of the Fourier presentation 
(34) are as follows: 
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4.3. Process of Difference between 
Critical and Instantaneous Roll Rates 

The condition of capsizing after upcrossing 
can be formulated as follows: when an 
upcrossing occurs, the roll rate at upcrossing 
should exceed the critical roll rate: 

 ) . (37) ()( 11 tt crφ>φ &&

It makes sense, therefore, to consider a 
process of the difference between the 
instantaneous and critical roll rates 
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The process of the difference, further 
identified as , is normal as both critical 
and instantaneous roll rates are normal.  
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An assumption that upcrossing follows 
Poisson flow infers that upcrossings are rare; it 
allows the use of a particular solution of the 
non-rare problem, because the general solution 
of homogeneous equation generated after each 
down-crossing will not be statistically 
significant.  Therefore, 
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The process of the difference of rates can 
now be trivially presented as a Fourier series as 
it is already defined for both processes on the 
right-hand-side of equation (38): 
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The components of this formulation are 
defined as follows: 
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4.4. Probability of Capsizing 

Following the formulation of the condition 
of capsizing after upcrossing (37), its 
probability can be expressed as: 
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Here ( )dcrf φ&  is the distribution of the 
distance between critical and instantaneous roll 
rates at the instance of upcrossing. This 
distribution can be expressed as (see derivation 
in Appendix 1): 
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Here  and are the probability 
density distributions of the carrier and its 
derivative. These distributions are known to be 
normal. The term, , expresses a joint 
distribution of the carrier process, its derivative 
and the distance between instantaneous and 
critical roll rates. As marginal distributions of 
all these processes are normal, it is logical to 
assume that their joint distribution is also 
normal. Then their mutual dependence can be 
fully characterized by correlation moments. 
Evaluation of these correlation moments does 
not present any difficulties as Fourier 
presentations are available for all of them: 
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Respectively, correlation coefficients are: 
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Standard deviations are: 

ddxxxx VVV =σ=σ=σ ;; && . (49) 

The variances of the carrier process and its 
derivative are defined by formulae (14). The 
variance of the distance between instantaneous 
and critical roll rates can be found from its 
Fourier presentation (40): 
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As a formula for tri-variate normal 
distribution is rather cumbersome, it is more 
convenient to consider it as a product of 
marginal bi-variate and conditional 
distributions: 
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The first term in (51) is a conditional 
distribution of the derivative of the carrier if 
two other processes have taken particular 
values. As the tri-variate distribution is normal, 
the conditional distribution is normal too. Its 
parameters are defined through the parameters 
of the tri-variate distribution in the following 
way: 
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Here md is a mean value of the distance 
between instantaneous and critical roll rate. It 
is readily available from (40): 

 )( 002 vmdm φ−φλ= . (54) 

The standard deviation (53) of the 
conditional distribution is a constant, while the 
mean value is a function of φ ; therefore, as 
expected, the conditional distribution in (51) is 
a function of two variables: 

d
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The second term in (51) is just a bi-variate 
normal distribution of the carrier and the 
distance between the instantaneous and critical 
roll rates, evaluated at the angle of the 
maximum of the restoring curve in calm water, 

. It is convenient to present it in the 
form of a conditional distribution: 
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Distribution (56) is also normal with mean 
value and standard deviation defined as:  
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The conditional distribution (56) can then 
be expressed as follows: 
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As the distribution of the derivative of the 
carrier is also normal, the integral in the 
denominator in (44) can be evaluated in closed 
form: 
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The substitution of formulae (51), (55), (59) 
and (60) into (44) gives the final formula for 
the distribution of the distance between 
instantaneous and critical roll rate at the 
upcrossing of the carrier: 
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Finally, the probability of capsizing during 
time T is expressed by combinating (12) and 
(43), 

 )exp(1)( | TPTP UCC ξ−−= . (62) 

5. SELF-CONSISTENCY CHECK 

In order to ensure that the theoretical 
solution is correct, a self-consistency check 
was performed. In this check, the dynamical 
system described by (4), with stiffness defined 
by (2) and (3), was evaluated for a large 
number of records in the time domain and the 
number of observed capsizes was counted in 
order to get a statistical probability of capsize. 
The results of the study, which are presented 
below, demonstrate clear convergence of the 
statistical probability of capsize to the 
theoretical solution (62). In addition to the final 
probabilities, some intermediate results are also 
presented in order to demonstrate how the 
theory works. 

Numerical data for the self-consistency 
check, including ship and wave properties, are 
shown in Table 1.  The irregular seaway was 
derived using a Bretschneider open ocean wave 
spectrum. Figure 6 shows the autocorrelation 
function of waves evaluated from the spectrum 
using cosine Fourier transform on the accepted 
discretization. It shows no sign of a self-
repeating effect and therefore demonstrates the 
statistical representativeness of the accepted 
spectrum discretization for the desired duration 
of the time records (30 min). The initial set of 
calculations consisted of 200 records, each 
representing a 30 minutes realization of the 
same irregular seaway, and was used to check 
intermediate results such as the characteristics 
of upcrossing as well as the final capsizing 
result. Two sets of 6000 records each were then 
used to check the convergence of the statistical 
probability of capsizing. 
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Table 1. Numerical data for self-consistency 
test. 

Variable Symbol Unit Value 
Roll natural 
frequency, 

ω0 1/s 0.65 

Heave natural 
frequency 

ωζ 1/s 1.3 

Angle of maximum in 
calm water 

φm0 Rad 0.5 

Roll damping 
(fraction of critical) 

μφ - 0.2 

Heave damping 
(fraction of critical) 

μζ - 0.4 

Slope of decreased 
part of stiffness 

k1 - 1.0 

Angle of vanishing 
stability in calm 
water 

φv0 Rad 1.0 

Slope coefficient for 
stability change 

kd 1/m 0.0256 

Duration of each 
record 

T s 1800 

Time step Δt s 0.2 
Number of 
frequencies 

Nω - 245 

Significant wave 
height 

Hs m 11.5 

Modal wave period Tm s 16.4 

Figure 7 shows one of the capsizing 
episodes observed in this calculation set. The 
upper graph shows the time histories of the 
ship roll angle (φ) and the instantaneous angle 
of the maximum of the restoring curve (φm). At 
approximately t = 1425 s, the roll angle 
exceeds the instantaneous angle of maximum 
of the restoring curve. The lower graph shows 
the time histories of the critical, ( cr , and 
instantaneous roll, ( , rates. At that time, the 
instantaneous roll rate exceeded the critical roll 
rate. As a result, the dynamical system 

experiences capsizing and transits to another 
equilibrium state. 

)φ&
)φ&

Applicability of the Poisson flow to the 
upcrossing events of the carrier process is one 
of the key assumptions in the method. This can 
be checked by comparing the cumulative 
distribution of the time before upcrossing with 
the theoretical distribution and using the 
Kholmogorov-Smirnov (K-S) test to judge the 
goodness-of-fit. The test gives a 95% 
probability that the difference between the two 
is a result of random causes, which confirms 
the fit. Figure 8 shows the theoretical curve 
calculated with equation (12) along with 
statistical points, representing a probability that 
at least one upcrossing has been observed 
during that time. The inset in Figure 8 
compares the theoretical rate of upcrossing (13) 
to the mean number of observed upcrossings 
per unit of time shown with a 95% confidence 
interval. Justification and more details on these 
procedures can be found in (Belenky, et al., 
2008). 

Figure 7. Capsizing episode: the roll crosses 
instantaneous angle of maximum, and 
instantaneous roll rate exceeded critical roll 
rate. 
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Figure 6. Autocorrelation function of waves 
calculated using Fourier cosine transform from 
input spectrum. 
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Figure 8. Cumulative distribution of the time
with at least one upcrossing. Probability that
the fit is good is 0.95 (K-S Test); inset:
upcrossing rate. 

Another important point to check is the 
distribution of the difference between 
instantaneous and critical roll rate at upcrossing 
of the carrier (61) as well as probability of 
capsizing after upcrossing (43). Figure 9 shows 
a histogram of the values of the difference 
between the instantaneous and critical roll rate 
taken at the instant of upcrossing. The 
theoretical curve is calculated with formula 
(61). The importance of the difference between 
theoretical results and observed statistics was 
judged using Pierson chi-square criterion that 
has shown a finite probability of 7.7% that the 
observed difference is caused by random 

reasons. 

The inset in Figure 9 shows comparison of 
the theoretical probability of capsizing after 
upcrossing (43) with the statistical estimate 
(Out of 200 runs, 70 ended up with capsizing 
and there were 1783 upcrossings all in total). 

The boundaries of the confidence interval 
were evaluated using the standard formula for 
statistical frequency: 
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=  (63) 

Here P* is the statistical frequency, N is the 
volume of the sample, and Kβ is the half-
breadth is expressed in terms of standard 
deviations; for the accepted confidence 
probability of 95%, Kβ = 1.95996. 

Figure 10 shows a comparison between the 
theoretical and statistical estimates of 
probability of capsizing during a period of 30 
minutes. As can be seen from this figure, the 
theoretical probability of 0.32 is within of the 
confidence interval of the statistical frequency 
of capsizing 0.35 ± 0.07 estimated over 200 
independent realizations. 

To complete the self-consistency check, the 
convergence of the probability was tested. As 
shown in Figure 11, the statistical probability 
of capsizing was evaluated for an increasing 
number of records and plotted along with their 
confidence interval and the theoretical solution 
(63). The upper and lower graphs correspond to 
two independent sets of initial phases for the 
waves. These two sets were used to see 
different patterns of convergence. 

Probability of capsizing 
after upcrossing 

0.06 

-0.2 -0.1 0 0.1 0.2 0.3 

2 

4 

dφ& , rad/s 

( )dcrf φ&

Figure 9. Distribution of the distance between 
critical and instantaneous roll rate at 
upcrossing. Probability that the fit is good is 
0.077. 
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As it can be seen from both graphs in 
Figure 11, the statistical probability of 
capsizing does converge and the theoretical 
result stays within the confidence interval of 
the statistical value. The convergence is 
relatively fast in the first 1000 records but 
slows down afterwards. This may be partially 
caused by imperfect phase generation as 

capsizing phenomenon is known to be very 
sensitive to phases.  

Taking into account both the analysis of 
intermediate results such as upcrossing rate and 
a verification of the convergence of the 
statistical probability of capsizing to the 
theoretical value, the self-consistency check for 
the present method may be considered as an 
affirmation in the sense that it does not 
disapprove the theory. 

6. CONCLUSIONS 

This paper presents the application of a 
split-time approach to evaluating the 
probability of a ship capsizing in waves with 
consideration of the ship’s change in stability 
in waves. 

The change in stability for a ship in waves 
can be modeled in a dynamical system with 
piecewise linear stiffness by considering the 
boundary between ranges as a stochastic 
process correlated with the excitation. This 
process may be introduced as a deterministic 
function of heave motions. If the increasing 
range remains linear and the decreasing part 
remains parallel to itself all the time, the 
solution remains linear within each range, and 
an analytic solution to the roll equation can be 
presented. 

The concept of critical roll rate as a 
stochastic process has been introduced. The 
critical roll rate is defined as the roll rate at 
which a ship upcrossing the maximum of the 
GZ curve will capsize.  Since the GZ curve is 
changing with the motion in waves, the critical 
roll rate is a function of time.  At each instant 
of time, if an upcrossing occurs and the roll 
rate at upcrossing exceeds the critical roll rate, 
then a capsizing is imminent. 

The capsizing probability can therefore be 
associated with the probability of upcrossing 
the maximum of the GZ curve with a roll rate 
at the instant of upcrossing exceeding the 
critical roll rate. Upcrossings are assumed to 
follow Poisson flow. 

0.3 

0.35 

0.4 

Probability of Capsizing in 30 min 

Statistics Theory 

Figure 10. Probability of Capsizing in 30 
min estimated from statistics over 200 
records and calculated with formula (62). 
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Figure 11. Convergence of the statistical 
frequency to theoretical solution as number of 
runs increases. Upper and lower graphs differ 
in sets of initial phases. 
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The self-consistency of the method was 
demonstrated by evaluating the response of the 
dynamical system in time domain, counting the 
observed capsizes to get a direct statistical 
estimate of the probability of capsizing, and 
demonstrating that this value converges to the 
theoretical result as the volume of statistical 
data is increased.  

In general, the viability of a split-time 
approach considering the change of stability in 
waves was demonstrated using a simple 
example. This paves the way to the application 
of the split-time approach with more 
sophisticated tools including advanced 
numerical simulations of ships in waves. 
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9. APPENDIX 1 

Consider a stationary stochastic process, 
x(t), that crosses a level a at an arbitrary instant 
of time t. Consider another stochastic process, 
y(t), that depends on the process x(t). The 
objective is to find the probability density 
distribution of the instantaneous value of the 
process y(t) when the process x(t) up-crosses 
the level a. 

A random event of upcrossing is defined as: 

∫ ∫ ∫
∞−
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The most internal integral in the formula 
(A5) has limits that are infinitely close to each 
other. Application of the Integral Mean Value 
Theorem yields: 
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The probability of upcrossing P(U) can be 
expressed in similar way: 
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)()()( . (A7) By definition, the cumulative probability 
distribution is: 

  (A2) .)|()( UbyPyFcr ≤=
The cumulative distribution of the value of 

y(t) at upcrossing can be expressed by 
substituting (A6) and (A7) into (A3) and (A2): The conditional probability in formula (A2) 

can be expressed as: 
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Here  is the probability of 
occurrence of an upcrossing with the value of 
the process, y(t), not exceeding an arbitrary 
number b. This random event can expressed 
through the following system of inequalities: 

)( UbyP ∩≤

The probability density is obtained from 
(A8) by taking a derivative with respect to y: 
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Probability of the random event defined by 
equation (A4) can be expressed trivially 
through a joint distribution of the process x(t), 
its derivative and the process y(t): 

Equation (A9) represents the final result for 
the distribution of the dependent process at 
upcrossing. This result may be known in the 
Upcrossing Theory; however the authors were 
unable to locate appropriate references. 
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