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ABSTRACT 

The paper demonstrates that the sea spectra recommended by ITTC, based on the Bretschneider 
formulation, can be reduced to a nondimensional spectrum, the same for all the spectra, with unit 
area. In other words – these well-known spectra have geometrical affinity. This fact has been un-
known in literature. Any ITTC sea spectrum, described by two parameters A and B, can be gener-
ated using the nondimensional spectrum. The same also applies to JONSWAP spectra. The latter re-
quires in addition a third parameter, termed as the peak-shape parameter. The paper explores this 
possibility. The fact that all the sea spectra used by naval architects can be reduced to a common 
dimensionless spectrum of unit area opens up the possibility of approximating them by probability 
density functions of certain types. Such spectra, contrary to ITTC ones, are narrow-banded, with the 
bandwidth parameter less than 1, and have moments of any order. 
 
Keywords: sea spectra, approximations, and properties 
 
1. INTRODUCTION 

The ITTC spectral formulation for fully de-
veloped seas, derives from Bretschneider, and 
are given by the following equation: 

S(ω) = (A /ω5) e–B/ω4
, (1)

where A and B are constants. It is convenient to 
apply a substitution t = B/ω4 for calculating the 
spectral moments. For the nth moment, we get: 

mn = ¼AB¼n –1 ∫0

∞ t –¼ne–t dt = 

 = ¼AB¼n –1Γ (1−¼n ), 
(2)

where Γ(x) is the gamma function, defined for 
positive x by the integral Γ (x) = ∫ 0

∞ t x–1e–t dt. As 
the argument of the function gamma has to be 
positive, the moments exist only for n < 4. The 
4th and higher moments are infinite. Therefore 
the bandwidth parameter ε is unity, which im-
plies the ITTC spectrum is wide-banded. 

Substituting n = 0, 1 and 2, and making use 
of the well-known feature of the gamma func-
tion: Γ(x +1) = xΓ(x), the following results for 
the first moments: 
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For large ω, S  decays as ω−5. Due to this 
reason, the 4th and higher spectral moments do 
not exist, which is far from reality. For real 
seas all moments exist and the bandwidth pa-
rameter ε is less than 1, from the region 
〈0.40,  0.80〉. 
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2. STANDARD SEA SPECTRA 

ITTC spectra are defined by two parameters 
A and B, as seen in equation (1). In order to de-
fine these parameters, we have to use two char-
acteristic values describing wave intensity. The 
most important is the significant wave height hs 
= 4σ, where σ is the standard deviation of wave 
elevation. Hence, hs

2= 16σ2 = 16m0 = 4A/B. The 
constant A is then given by the equation: 

A = ¼Bhs
2, (4)

depending on the other constant B, related to one 
of the wave periods. Most frequently, the char-
acteristic period is used T1 = 2π m0/m1. Making 
use of equations (3), we get 
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A spectrum with the above constants A and 
B is called the ITTC spectrum. It is easy to show 
that all the characteristic frequencies, such as the 
modal frequency ωm, the mean (average) fre-
quency ω–, and the average zero-crossing fre-
quency ω0 are in proportion to B1/4, which 
means they are in the same proportions relative 
themselves. This in turn suggests that ITTC 
spectra have geometrical affinity, which can be 
proved rigorously. It is worth noting that the 
average peak frequency ω2 does not exist for 
ITTC spectra. 

According to Pierson and Moskowitz the 
constants A and B are as follows: 

A = c1g2, B = c2(g /U)4, (6)

where c1 = 0,0081, c2 = 0,74, g is the acceleration 
due to gravity, and U is the mean wind speed at 
19.5 m above the sea surface. A spectrum with 
such constants is called the Pierson–Moskowitz 
spectrum. As can be seen, it is a one-parameter 
spectrum, solely dependent on wind speed, which 
is not very convenient. In the applications, it is 
more convenient to utilise the significant wave 
height rather than the wind speed. To do so, the 
constant B has to be related to the significant 

wave height hs = 4σ. Since σ2 = m0, therefore 
(hs /4)2 = ¼A/B. Hence, B = 4A /hs

2. 
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Figure 1. Pierson–Moskowitz spectra as a func-
tion of significant wave height hs  

The Pierson–Moskowitz spectra, depending 
on the significant wave height hs, are shown in 
Figure 1. As can be seen, the modal frequency 
ωm decreases with the significant wave height 
hs, which can also be deduced from equation 
(7) for the modal frequency:  

ωm = (0.8B)1/4, (7)

which results from: S'(ω) = 4Bω−4 −5 = 0. Equa-
tion (7) yields B = 1.25 ωm

4. Inserting it to equa-
tion (6) yields: 

ωm = (0.8c2)1/4(g/U) = 0.877(g/U). (8)

Equating B = 4A /hs
2 to B given by equation 

(6) ψιελδσ a standard relation between wind 
speed and sea severity: U4 = (c2/4c1)(ghs)2. 
Hence, 

U  = (c2/4c1)1/4(ghs)1/2 = 2.186(ghs)1/2. (9)

For instance, for hs = 9 m, the standard wind 
speed U = 20.5 m/s. 

3. JONSWAP SPECTRUM 

The JONSWP formulation is based on an 
extensive wave measurement programme 
known as the Joint North Sea Wave Project 
carried out in the years 1968–69. The spectrum 
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represents wind generated seas with fetch limi-
tation, and wind speed and fetch length are in-
puts to this formulation, which is as follows: 

( ) ( ) ( ) ( )[ ]22 2/exp

1

mm
PMS

c
S σωω−ω−γω

α
=ω  (10)

where γ  = parameter, 3.3 as an average 
 α  = 0.076  x–−0.22 – scale parameter 
 σ  = 0.07 for ω< ω , and 0.09 for ω> ωm m
 ωm = 2π⋅3.5(g/U)  x–−0.33 
 x–  = gx/U2 – dimensionless fetch 
 x  = fetch length (in m) 

The scale parameter α = c1, if x– = 26 283, 
which is quite large. Therefore, in most cases 
α > c1. 

The parameter γ is called the peak-shape 
parameter and it represents the ratio of the 
maximum spectral energy density to the maxi-
mum of the corresponding Pierson–Moskowitz 
spectrum. The term associated with the exponen-
tial power of γ is called the peak enhancement 
factor, and the JONSWAP spectrum is the 
product of the Pierson–Moskowitz spectrum 
(with B =5/4 ωm

4) and the peak enhancement fac-
tor. The effect of the peak-shape parameter on 
the JONSWAP spectrum for wind speed U = 30 
m/s and fetch length x = 280 km is shown in 
Figure 2. The modal frequency in this case ωm 
= 0.509 1/s and the ratio α/c1 = 1.606, which 
means that the area under the original Pierson–
Moskowitz spectrum for γ = 1 is increased by 
60.6%. γ-value increases area under the spec-
trum, hence – sea severity.  
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Figure 2. Effect of peak-shape parameter γ on 
JONSWAP spectra. 

Assuming A = αg2, and B = 1.25ωm
4, the 

first equation in (3) yields for the area under 
the JONSWAP spectrum with γ = 1 the value: 

m0 = 1/5 αg2/ωm
4. (11)

The parameter γ is actually a random vari-
able, approximately normally distributed from 
1 to 6, with mean 3.3 and variance 0.62, as 
shown by Ochi (1998). Similarly to the scale 
parameter α, also the peak-shape parameter γ 
can be presented as a function of dimensionless 
fetch: 

γ = 7  x–−0.142 (12)

The JONSWAP spectral formulation, as 
given by equation (10), is a function of wind 
speed and fetch length, resulting in a spectrum 
of certain significant wave height, unknown 
beforehand, which is not very convenient. Ochi, 
in his book, provides a relationship between the 
resultant significant wave height, wind speed 
and fetch length, as follows: 
U = k x −0.615hs

1.08 (13)

where U is in m/s, x in km, hs in m, and k is a 
constant depending on γ-value. Its reasonable 
quadratic approximation is as follows: 

k = 1.075γ2−13.46γ +116.41. (14)

Ochi derived equation (13) using equation 
(10) for various combinations of fetch length 
and wind speed. With the help of equation (13) 
the JONSWAP spectrum can be presented now 
for a specified significant wave height hs and 
fetch length x. 

4. NONSTANDARD SPECTRA 

ITTC spectra do not describe best real seas, 
as they are wide, with the bandwidth parameter 
ε = 1, whereas for real seas this parameter is 
from the range 〈0.40, 0.95〉. This results from 
too slow decay of ITTC spectra for large ω; 
they should decay exponentially, whereas they 
decay as 1/ω5. A question arises here, whether 
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seas spectra could be approximated better to 
allow for an exponential decay, yielding all 
spectral moments. Before we answer this ques-
tion, first we prove that ITTC spectra have 
geometrical affinity. 

4.1 Nondimensional ITTC spectrum 

Dividing the ITTC spectrum, given by 
equation (1), by the area m0 = ¼A /B, yields a 
spectrum of unit area, as follows: 

S1(ω) = (4B /ω5) e –B/ω4
. (15)

It is handy to introduce a new constant b in 
place of B = (1/b)4, having the dimension of 
time. The above unit-area spectrum now takes 
the form: S1(ω) = [4b/(bω)5]e–1/(bω)4, which can 
be presented shortly, as follows: 

S1(ω) = bs(bω), (16)

where s(x = bω) is a unit-area nondimensional 
ITTC spectrum, given by: 

s(x) = (4/x5) e –1/ x4
. (17)

Equation (16) is a mathematical statement 
that between the unit-area spectrum S1(ω) and 
the nondimensional spectrum there is an affin-
ity. The scale of transformation along the ω 
axis is 1/b. If b > 1 s the graph is diminished 
linearly b times along the ω axis, and increased 
b times along the vertical axis, to keep the area 
constant. When b < 1 s, it is the opposite – the 
graph is increased 1/b times along the ω axis, 
and reduced b times along the vertical axis. 

The general ITTC formulation can be pre-
sented with the help of the nondimensional 
spectrum. Multiplying the unit-area spectrum, 
given by equation (16), by the area m0, we get: 

S(ω) = ¼Ab5s(x), (18)

where b = B–1/4, x = bω, whereas s(x) is the non-
dimensional (universal) ITTC spectrum, given 
by equation (17) and shown in Figure 3, com-
mon for all the spectra. 
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Figure 3. Nondimensional ITTC spectrum. 

The largest energy density equals sm 
=5⋅1.251/4e−5/4 ≈ 1,515 and occurs at the nondi-
mensional modal frequency xm = 0,81/4 ≈ 0,946. 
The spectrum begins practically at x ≈ 0.52. The 
nondimensional spectrum is a generic spectrum 
– to obtain any ITTC spectrum, the abscissa 
axis is divided by b = B −1/4, and the ordinate 
axis is multiplied by ¼Ab5 . In particular, 
maximum of spectrum occurs at ωm = (0.8B)1/4 
and equals Sm = 1,515⋅¼Ab5  ≈ 0,379Ab5 . 

Spectral moments of the nondimensional 
spectrum, denoted by sn, are given by equations 
(3), in which A = 4, and B = 1. Applying substi-
tution x = bω in the integral mn = ∫0

∞  ωnS(ω)dω, 
for n = 0, 1, 2 and using for spectrum equation 
(18), it is easy to express spectral moments by 
moments of the nondimensional spectrum: 

mn = ¼Ab4 –n sn, for n = 0, 1, 2, … (19)

It follows from equation (18) that in order to 
carry out calculations, it is sufficient to approxi-
mate the nondimensional spectrum s(x), given 
by equation (17). Note that this function can be 
considered as if it were a probability density 
function since it satisfies all the conditions re-
quired for the probability density function. 
Hence, for the approximation any probability 
density function that diminishes exponentially 
can be used. There are many possibilities. Four 
of them will be discussed here: the log-normal 
distribution, a generalised gamma distribution, 
the gamma distribution and the Weibull one. 
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The Log-normal Distribution.  Probability 
density is given by the equation (DNV, 1996): 

( )
( )

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
β

μ−−
−

−βπ
=

2

2
1 lnexp

2
1 ax

ax
xf , (20)

where a, μ and β are constants to be fixed; a is 
a lower bound. The modal value occurs at a 
point x = a + exp(μ − β2). Moments of any order 
n = 0, 1, 2, …with respect to the lower bound 
are as follows: 

sn' = exp[½(nβ)2 + nμ]. (21)

To get moments with respect to the origin, 
they have to be suitably transformed, which is 
not difficult. We get these: 

s1 = s1' + a, 
s2 = s2' + 2as1 − a2, 
s3 = s3' + 3as2 − 3a2s1 + a3, 
s4 = s4' + 4as3 − 6a2s2 + 4a3s1 − a4, etc. 

(22)

Knowing the nondimensional moments sn, 
moments of the spectrum itself can be obtained 
with the help of equation (19). The coefficients 
in equation (22) follow the pattern of the Pascal 
triangle. 

The best method of finding the constants a, 
μ and β, describing the log-normal distribution 
(20) is the least squares method. Minimising the 
sum of squared deviations between the functions 
s(x) and f(x) at the range x <1,7 yields: a = 0.545, 
μ = –0.595, β = 0.566. The differences between 
the two curves are at the second decimal place, 
i.e., around the thickness of a line, as can be 
seen in Figure 4. 
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Figure 4. Nondimensional ITTC spectrum and 
log-normal distribution. 

Generalised Gamma Distribution. Probabil-
ity density function is given by (DNV, 1996): 

f(x) = [cλ/Γ(β)][λ(x – a)]cβ –1e – [ λ(x– a)]c, (23)

where 4 constants a, c, β and λ; are to be fixed; 
a is the lower bound, whereas the inverse of λ is 
the scale of distribution α = 1/λ. The constant c 
governs the speed of tail decay. The modal fre-
quency occurs at a point: x = a + α[(cβ −1)/c]1/c. 

The spectral moments with respect to the 
lower bound are these: 

sn' = αnΓ(β + n/c)/Γ(β). (24)

The moments with respect to the origin are 
given by equations (22). The four constants, 
obtained with the help of the least squares 
method are as follows: a = 0.6, c = 0.5, β = 10.6 
and λ = 213. As can be seen in Figure 5, the 
two curves differ insignificantly but the fit is 
slightly worse than in the case of the log-
normal distribution. 

It can be shown that, depending on the selec-
tion of the constants a, c, β and λ the general-
ised gamma distribution becomes a variety of 
different distributions, such as chi square, 
gamma, exponential, Rayleigh, Maxwell and 
Weibull, a fact which is not very well known. 
In other words, the above mentioned distribu-
tions are particular cases of the generalised 
gamma distribution, therefore they cannot get 
better results, which will be clearly seen below. 
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Figure 5. Nondimensional ITTC spectrum and 
generalised gamma distribution. 

Gamma Distribution. Probability density 
function is given by (DNV, 1996): 

f(x) = [λ/Γ(β)][λ(x – a)]β –1e– λ(x– a), (25)

where three constants a, β and λ; are to be fixed; 
as before a is the lower bound, the inverse of λ is 
the scale of distribution α = 1/λ, and β is called 
the shape parameter. The modal frequency oc-
curs at a point x = a + α(β –1). 

The spectral moments with respect to the 
lower bound are as follows: 

sn' = αnΓ(β+ n)/Γ(β). (26)
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Figure 6. Nondimensional ITTC spectrum and 
gamma distribution. 

The moments with respect to the origin are 
given by equations (22). The three constants, 
obtained with the help of the least squares 
method are as follows: a = 0.632, β = 2,633 and 

λ = 5. As expected, the gamma distribution fits 
somewhat worse than in the previous case, 
which is well seen in Figure 6. 

Weibull Distribution. Probability density 
function is given by (DNV, 1996): 

f(x) = λβ(x –a)β –1e – λ (x – a) β, (27)

where three constants a, β and λ; are to be fixed; 
as before a is the lower bound. The modal fre-
quency occurs at a point x = a + α[(β –1)/β]1/β, 
where α = λ –1/β is the scale of distribution, and 
β is the shape parameter. 

The spectral moments with respect to the 
lower bound are as follows: 

sn' = αnΓ(1+ n/β), (28)

The moments with respect to the origin are 
given by equations (22). The three constants, 
obtained with the help of the least squares 
method are as follows: a = 0,689, β = 1,567 and 
λ = 2,8; the scale α = 0,518. Both curves differ 
yet more than in the two previous cases, which 
can be seen in Figure 7. This spectrum has the 
smallest bandwidth parameter ε = 0.492, as its 
tail has the fastest decay. 
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Figure 7. Nondimensional ITTC spectrum and 
Weibull distribution. 

Statistical parameters of the discussed spec-
tra are compiled in Table 1 according to the 
bandwidth parameter ε. It helps to select a 
spectrum according to this parameter. The con-
stant c at the generalised gamma distribution 
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(23), governing the tail decay, can always be 
chosen in such a way to get a spectrum with a 
given bandwidth ε. 

As can be seen from Table 1, all the ap-
proximations of ITTC spectrum have practi-
cally the same modal frequency xm. The best 
approximation is the log-normal one. The mean 
frequency x1 is identical with the centre of 
gravity of the area under the spectrum, whereas 
the zero-crossing frequency is the same as ra-
dius of inertia of the spectrum area. Therefore, 
for any spectrum the following holds x0 > x1, 
supported by Table 1. The nondimensional fre-
quency is understood as x = bω, where b = B −1/4. 

Table 1. Statistical parameters for nondimen-
sional spectra of various approximations. 

 ITTC log-
normal 

general. 
gamma gamma Weibull

xm 0.946 0.945 0.947 0.959 0.960 
x0 1.331 1.257 1.232 1.203 1.194 
x1 1.225 1.192 1.177 1.159 1.155 
x2 ∞ 1.646 1.520 1.416 1.371 
ε 1 0.646 0.586 0.528 0.492 

where xm is the nondimensional modal frequency, 
x0 is the zero-crossing frequency, x1 is the mean 
(characteristic, visual) frequency, and x2 is the 
peak frequency. 

4.2 Nondimensional JONSWAP Spectrum 

The nondimensional ITTC spectrum s(x), 
shown in Figure 3, refers to fully developed seas 
at open sea, whereas the JONSWAP spectrum 
represents wind-generated seas with fetch limita-
tion. Contrary to ITTC spectra, for given wind 
speed and fetch length the resulting sea sever-
ity (in terms of the significant wave height hs) 
is random, having, however, a determinate mo-
dal frequency. In literature there is no explana-
tion provided for this randomness, which 
probably results from the time elapsed from the 
previous storm. The random sea severity is 
governed by the peak-shape parameter γ, of 
random nature, whose mean value equals 3.3. 

Dividing JONSWAP spectrum, given by equa-
tion (10), by the area m0 = 1/5 αg2/ωm

4 for spec-
trum with γ = 1, and introducing, as before, the 
nondimensional frequency x = bω, leads to a 
nondimensional JONSWAP spectrum s∗(x): 

( ) ( ) ( ) ( )[ ]22 2/exp mm xxxxsxs σ−−∗ γ= , (29)

where s(x) is the nondimensional ITTC spec-
trum, given by equation (17) and shown in 
Figure 3, whereas xm is the nondimensional 
modal frequency xm = 0,81/4 ≈ 0,946. Graphs of 
s∗(x), shown in Figure 8, illustrate the effect of 
γ-parameter on the nondimensional JONSWAP 
spectra. Since spectrum with γ =1 has a unit 
area, other spectra, with γ >1, have areas clearly 
greater than 1 (see Table 2). 
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Figure 8. Nondimensional JONSWAP spectra 
s∗(x) as a function of γ-parameter 

Table 2. Area under the nondimensional spec-
trum s∗(x) for specified γ-value. 

γ 1 2 3 4 5 6 

m0
∗ 1 1.862 2.697 3.515 4.323 5.122 

m0
∗ varies almost linearly with γ-parameter. Its 

linear and quadratic approximations are these: 

m0
∗ = 0.198 + 0.825γ, 

m0
∗ = 0.1366 + 0.8755γ−0.0075γ2, 

(30)

For the mean value of γ = 3.3,  m0
∗ = 2.944. 

With the help of the above quantity, the area 
under the JONSWAP spectrum can now be eas-
ily calculated as the product of the area for γ = 1, 
given by equation (11), and the quantity m0

∗: 
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m0 = m0
∗αg2/5ωm

4. (31)

The γ-related m0
∗  factor has the meaning of 

a coefficient of amplification for the JON-
SWAP spectrum. Since m0 = hs

2/16, and substi-
tuting for α and ωm the expressions given at 
equation (10), the following is obtained for sea 
severity: 

hs = 0.00102x⋅x–−0.45√m0
∗ . (32)

For fetch length x = 280 000 m and wind 
speed U = 30 m/s, x– = 3052. Assuming γ = 3.3, 
the above yields for hs = 7.72⋅2.9441/ 2 m = 13.25 
m. 

Solving equation (32) with respect to wind 
speed, yields: 

U = 96.92x−11/18m0
∗−5/9hs

10/9, (33)

where U is in m/s, x in km, hs in m, and m0
∗  is a 

constant depending on γ-value. Contrary to equa-
tion (13), showing some degree of approxima-
tion, equation (33) is strict. 

Normalising the nondimensional spectra 
s∗(x) with respect to the coefficient of amplifi-
cation m0

∗, a unit-area nondimensional JON-
SWAP spectra sJP(x) is obtained, shown in Fig-
ure 9. 
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Figure 9. Normalised JONSWAP spectra as a 
function of γ-parameter. 

The ratio between the maximum density for 
specified γ-value and γ =1, denoted by λ, has the 
meaning of a real peak-shape parameter. As is 
seen in Figure 9, the greater the γ-value the 
greater the λ-value. Values of λ are shown in 
Table 3. 

Table 3. λ-value for specified γ-value for the 
JONSWAP spectrum 

γ lg γ λ 
1 0 1 

1.2 0.079 1.021 
1.5 0.176 1.045 
2 0.301 1.074 
3 0.477 1.112 
4 0.602 1.138 
5 0.699 1.157 
6 0.778 1.171 

The above λ-value can be very well ap-
proximated relative to the logarithm of γ: 

λ = 1+ 0.261 lgγ − 0.0525 lg2γ, (34)

Assuming that the modal density is λ times 
greater relative to the nondimensional ITTC 
spectrum and applying affinity transformation 
we get that the latter spectrum has to be λ times 
reduced along the abscissa axis with the centre of 
transformation at the modal frequency. The area 
and the modal frequency are then unchanged. 
The following results in such a case for the nor-
malised JONSWAP spectra: 

sJP(x') = λs[x = xm + λ(x' – xm)], (35)

where s(x) is the generic nondimensional ITTC 
spectrum, given by equation (17), x = bω  is the 
nondimensional frequency, the constant b equals 
B −1/4 = xm /ωm, xm = 0,81/4 ≈ 0,946, and x' is a new 
x after transformation. The peak-shape parame-
ter λ governs the concentration of the spectrum 
around the modal value. Comparison between 
the normalised JONSWAP spectrum for the 
extreme value of γ = 6 (curve 1) and a spec-
trum obtained through the affinity transforma-
tion (curve 2) is shown in Figure 10. As can be 
seen, there are some modest differences be-
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tween the two curves, particularly in regions 
away from the modal frequency. 

A perfect approximation for the normalised 
JONSWAP spectra sJP(x) can be achieved by 
applying the log-normal distribution, given by 
equation (20). Minimising the sum of squared 
deviations between the functions sJP(x) and f(x) 
at the range x <2 yields: a = 0.4926, μ = –
0.5877, β = 0.4487. As can be seen in Figure 
11, computed for the extreme value of γ = 6, 
differences between the two curves are invisible 
in the scale of this figure. 

0

0.4

0.8

1.2

1.6

2

0 0.5 1 1.5 2 2.5 3 3

sJP(x)

bω 
1

2

1

2

.5  
Figure 10. 

0

0.4

0.8

1.2

1.6

2

0 0.5 1 1.5 2 2.5 3 3

sJP(x)

bω 

.5  
Figure 11. 

5. CONCLUSIONS 

The paper demonstrated that the ITTC and 
JONSWAP spectra can be reduced through the 
affinity transformation to a common unit-area 
nondimensional spectrum that can be precisely 
approximated by a log-normal distribution. 

Such approximated spectra, contrary to the 
original, are narrow-banded, with the bandwidth 
parameter less than 1, and have moments of any 
order. 
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