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DEVELOPING THE S FACTOR
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ABSTRACT

The current various proposals at IMO for the s factor (probability of surviving a given flooding)
make no reference to survival time. The paper shows a direct link of the 'prime' s factor with the
time to capsize and shows how to utilise experimental data from 30-minute test runs for the s factor
based on longer duration of tests. Unexpectedly, the extension of tests has a modest effect on the
survival factor, and hence — modest effect on subdivision index A. Much more important is improv-
ing a deficient formulation for the required index R, as flooding cases with S; =1 have an infinite

survival time."
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1. INTRODUCTION

The factor s is understood as the conditional
probability of surviving a given flooding due to
collision damage with sufficient survival time,
assumed to be 30 minutes during the original
research, related to the static equivalency method
(SEM). This method was developed in 1995 in
the wake of the sinking of “Estonia” for ro—ro
vessels with the large open main deck (vehicle
deck). The method evolved from research carried
out at Strathclyde University (Vassalos 1996,
and 1997) based on a framework presented ear-
lier by Pawlowski (1995).

The current various proposals at IMO for the
s factor make no reference to survival time,
which is a serious drawback. Nowadays suffi-
cient survival time is considered to be 3 hours.
Hence a question arises, if the s factor, based on
half-an-hour duration of tests, is still valid for
regulatory purposes. The answer to this question
is provided below. The analysis of the problem
is not that easy, as survival time is a random
quantity.

2. SURVIVAL TIME

In spite of the complexity, probability den-
sity function (pdf) of survival time can be rela-
tively easily derived recalling the basic prob-
ability theory. For that we shall consider ex-
periments with a damaged ship lasting an in-
definite time whose duration time has been di-
vided into 30-minute segments. It is reasonable
to assume that probability of surviving in each
segment is the same and equals P. This prob-
ability could vary only in case of progressive
flooding. Such a sequence of tests, with a con-
stant probability in each trial, is termed as a
Bernoulli trial process.

Probability P is a prime s factor and for a
given damage scenario and loading condition is a
function of sea states in terms of the significant
wave height Hs. The quantity 1-P then repre-
sents probability of capsizing, identical with
CDF of critical sea states. The random nature of
the critical sea states comes from the random
nature of water elevation on the vehicle deck,
discussed by Pawtowski (2003). Probability P
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varies across the capsize band from a value 1 at
the lower boundary to zero at the upper bound-
ary of the capsize band (uncertain zone), see
Figure 1. Above the upper boundary there is an
unsafe region with a 100% of capsizal, where
the time to capsize, termed also as the survival
time, is in minutes and reduces to seconds,
when the sea state becomes higher. Below the
lower boundary a safe region stretches with a
100% of survival (no capsizal), where survival
time is infinite. It is noteworthy that all tests
before 1995 failed to identify the existence of
the capsize band.
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Figure 1. Definition of capsize band and survival boundaries for given flooding versus height
of the centre of gravity (for a passenger vessel investigated in the Harder project).

If probability of surviving one segment is
P, probability of surviving n segments is given
by:

F=P",

= )
where n = t/t,, t is time (in minutes) measured
from the completion of flooding, and t, =30
minutes. During the first half an hour segment
p, = 1—P ships capsize, during the second seg-
ment P, = P>~P = P(1—P) ships capsize, during
the third one p; = P’~P? = P?*(1-P), and so on.
Probability of capsizing after n segments equals
obviously 1-P". This is identical with the CDF,
shown in Figure 2 for P = 0.4 and 0.8, since Xpy
for the first N consecutive segments equals 1-P".

Figure 2. CDF for survival (capsizal) time.

The curves in Figure 2 are broken (seg-
mented) instead of stepwise, as probability of
capsizal in each segment is uniformly distrib-
uted. Probability density functions correspond-
ing to these CDFs are therefore histograms,
shown in Figure 3, that agree very well with
those obtained from experiments. The fraction
of capsized ships in consecutive segments equals
Pk = P'H(l—P). Mass probabilities related to
these segments form a geometric sequence with
the ratio P.

Knowing the frequency of ships that cap-
sized in each segment the average time of cap-
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sizal (survival) can be calculated. Assuming
that capsizing is equally distributed over each
segment, the mean survival (capsizal) time is
given by the following expression:

ts=15(p1+3P2+5p3+...) = 152(2n-1)pp,

with pn = P"™'(1-P), where the summation is
taken from n = 1 to infinity. After performing
simple mathematics, shown by Pawlowski (2004
and 2007), the following expression results for
the mean survival (capsizal) time:

1+P

=15-— (mi 2
t, =15 l_P(mm), 2)

The higher the probability of survival P, the
higher the mean survival time is, clearly seen
also in Figure 2 and Figure 3, providing more
time for evacuation. The mean survival time in
Figure 2 equals area above the CDF up to the
asymptote, whereas in Figure 3 equals the cen-
tre of gravity of area under the pdf. If P ap-
proaches 1, survival time tends to infinity,
which agrees with common sense. Table 1 pro-
vides values of the mean survival time ts as
function of P, based on equation (2).
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Figure 3. Distribution of probability for cap-
sized ships and its analytic approximation.

A stepwise distribution of survival (cap-
sizal) time can be easily approximated by a
continuous distribution of the non-dimensional
variable X = t/t,, as clearly seen in Figure 2.
The CDF in terms of X, denoted by F, is ob-
tained simply replacing n by x. Therefore,

F=1-P*=1-e"P=1-¢™

where A = —InP. Differentiating F relative to X
yields the pdf. We then get for the pdf the ex-
ponential law of distribution:

f=ae™ (3)

As can be seen in Figure 3, the continuous
pdf for capsizal time passes through midpoints
of individual segments, smoothing the histo-
gram.

The mean non-dimensional survival (cap-
sizal) time Xs = ts/t, related to the exponential
distribution of capsizal is given by the integral:

X = [ xf(x)dx = 2[ xedx = 1/a.

Hence,

to=to/A = —to/InP. 4)

Making use of a very handy approximation
for the natural logarithm: InP ~ 2(P-1)/(P+1),
equation (4) becomes identical to equation (2).

3. THE CONDITIONAL PROBABILITY
OF SURVIVAL

As the sea state Hs at moment of collision is
random (unknown beforehand), the resultant
probability s that a ship with given loading

Table 1. Mean survival time ts (in minutes) versus the prime S factor P.
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condition (KG-value) and compartment flooded
will not capsize after damage within 30 min-
utes can be obtained by averaging the prime
survival factor P = P(H;) with respect to sea
states at the moment of collision:

S= E(P) = -[Hs P(HS)fC(HS)dHS: (5)

which follows from the Bayes theorem for total
probability, where P(Hs) is the probability of sur-
vival during 30 minutes at given loading condi-
tion and compartment flooded, and f; (Hs) is the
probability density function of sea states at the
moment of collision. Integration in equation (5)
takes place across the capsize band (vertically in
Figure 1) from the lower to the upper boundary.
Outside the capsize band the integrand vanishes.
The probability of surviving P starts with a value
1 at the lower bound of Hs at the uncertain zone
and terminates with a value of zero at the upper
bound (see Figure 1). That is to say, the prob-
ability P(Hs) monotonically decreases across
the capsize band. Hence, P(Hs) = 1-F(Hs) is
the tail of CDF for the critical sea states.

Applying integration by parts in equation
(5), the following is obtained:

s=PFe|, + [}, Fe(Hs) f(Hs) dH, (6)

since P' = —f(H;). The first term vanishes and
we get eventually

S= IHS Fe(Hs) f(Hs) dH. (7

Equation (7) has a similar structure as equa-
tion (5). However, in the latter the resultant
factor s is expressed by averaging the CDF of
sea states at the moment of collision with respect
to critical sea sates, whereas in the former —
vice versa — the elementary factor S is averaged
with respect to sea states at the moment of colli-
sion. By virtue of the mean value theorem inte-
gral (7) equals F¢, taken at a certain point, de-
noted by Hgm, somewhere inside the range of
integration. That is to say, the resultant factor s
equals the probability that the sea state at the

moment of collision will not exceed some mean
value of the critical sea states for given loading
condition and damage scenario. The quantity
Hsm need not necessarily be identical with the
expected (mean or average) value of the critical
sea states but none the less it is very close to it.

The mean critical sea state can be easily de-
fined if the function P(Hs) is known — it simply
equals the area under this curve. However, the
mean critical Hs has to be defined during model
tests, which is virtually impossible to do. In
such a case it is far more convenient to replace
it by a median value. That is, the critical sea
state (or the critical KG-value) is defined as
such in which in 50% of runs the ship capsizes
and in 50% survives. In routine calculations the
critical median sea state is obtained from the
SEM, as discussed by Pawtowski (2004), and
Vassalos (1996 and 1997).

The averaging process in equation (7) can
be done in a more direct way. The function
Fc(Hs) can be expanded into a Taylor's series
around Hs, — the mean value of the critical sea
state, unknown beforehand. Taking three terms
of this expansion, we get

S= IHS [Fe +fo(Hs — Hsm) +
Vot (Hs — Hsm)* ] f(Hs) dHs,

where F;, fo, and f.' are calculated at Hg = Hgp,.
The above yields then

s=Fc(Hsm) + 21" V(Hs), (8)

as the second term vanishes by definition, where
V(Hs) is the variance of the critical sea states.
Since f¢' = F." is negative, the resultant s factor
is therefore somewhat smaller than F¢(Hsp).
Further, since the median value for asymmetrical
distributions is somewhat smaller than the mean
value, therefore for the sake of simplicity it can
be taken eventually that

S= Fc(Hs = Hsso%)- (9)
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For example, for a triangular distribution,
the mean value is Y5 of the extension, whereas
the median equals (1-v0.5) = 0.29 of the exten-
sion. Some degree of approximation is justi-
fied, as the CDF of sea states at the moment of
collision, shown in Figure 4, is known with a
limited accuracy. Bearing this in mind, the de-
tailed run of the prime s factor — the function
P(Hs) is not very necessary, since what is
needed for the calculation of the resultant s fac-
tor is the knowledge of the median value of
critical sea states Hssoo.

Equation (9) says that having determined
(by physical model tests or numerical simula-
tions) the critical sea state Hssoo, for given
damage case and loading condition (KG-value),
the resultant factor s = Fc(Hsso), essential for
the probabilistic subdivision regulations, can be
obtained from the CDF of sea states occurring
at the moment of collision F; = F:(Hs). This
factor simply equals the probability that the
mean critical significant wave height, taken as
the median Hssye, 1s not exceeded at the mo-
ment of collision. For this purpose, it is suffi-
cient to use the sea state distribution proposed
by IMO, as shown in Figure 4, yielding s > 0.3.
Approximations of the said distribution can be
found in Pawlowski (2004, and 2007). In rou-
tine calculations, the critical sea state Hssgo,
(with a 50% protection) provides the SEM.
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Figure 4. IMO distribution of sea states occur-
ring at the moment of collision.

It is noteworthy that the distribution of sea
states at the moment of collision is different
from the distribution obtained from regular
weather statistics. In a large majority of cases,

collisions happen in the proximity of ports, in
confined waters and in fog, typically associated
with calm weather. It is understandable that in
such circumstances sea states are on the whole
lower than at the open sea or under normal op-
erating conditions, and — because of that —
probably not much different for various sea re-
gions. If the sea state distributions do differ for
certain regions, this would provide space for
regional deviation in formulae for the s factor.

4. ACCOUNTING FOR A LONGER
SURVIVAL TIME

In the previous section it has been shown
how to derive the s factor based on 30-minute
tests. That is to say, such a factor provides
probability of surviving given flooding at given
loading condition with a minimum survival
time equal to 30 minutes.

If probability of surviving over 30 minutes,
denoted by P, is known, then probability of
surviving one hour equals P?, as argued in sec-
tion 2. Hence, the factor S corresponding to
survival time equal to at least one hour is ob-
tained by averaging P? over the sea states at
moment of collision. Therefore:

s=E(P?) = [, P*fu(Hs)dHs. (10)

Applying as before integration by parts, the
following is obtained:

s=—[, Fe(H)(P?)dHs = [ Fe(P)d(P?), (1)

where ' means differentiation with respect to
Hs, and P = 1-F(Hjy) is the tail of CDF for the
critical sea states. At the second identity the
function F¢(Hs) becomes F(P), as Hs = Hs(P).
The function s is positive, as (P*) = 2PP' is
negative, yet better seen at the second identity.
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Figure 5. Probability of surviving P (top) and
the function F versus P (bottom).

A typical run of the function F¢(P) is shown
in Figure 5; its detailed run depends on the run
of probability of surviving P over the capsize
band and the function F¢(H;) — distribution of
sea states at moment of collision. As can be
seen, the function F¢(P) monotonically decreases
from a value F taken for the lower boundary of
the capsize band (here 2 m) at P = 0, to a value
F. taken for the upper boundary of the capsize
band (here 3 m) at P = 1.

To abbreviate transformations of equation

(11), it is worth reinterpreting equation (7) and
noticing it can be written in the form:

s=],F(P)dP.

The above represents mean height of the area
under the graph shown in Figure 5, which
roughly equals a value at P = .. Therefore, S =
Fc(Hs = Hsso04), which agrees with equation (9).
In other words, the mean value theorem says
that the factor s equals F (i.e. CDF for sea states
at the moment of collision) calculated for such
a sea state Hs for which P = . Applying this
theorem again to equation (11) we immediately
get that the factor S equals F. calculated for the
sea state Hs for which P* = Y. This gives P =
V0.5 ~ 0.71. Therefore,
s = Fo(Hs = Hs719%), (12)
where Hs;0, denotes the sea state with a 71%
protection. In other words, Hs7¢, is the median
sea state for one-hour tests.

The above can be easily generalised. The
factor s corresponding to survival time equal to
at least n half an hour segments is obtained by
averaging P" over the sea states at moment of
collision. Therefore:

s=E(P") =], P"fu(Hs)dH;s =

1 ) (13)
J FeP)d(P™,

which yields

s = Fe(Hs = Hsp), (14)

where Hsy is the sea state with a protection p =
0.5"" or — in other words — the median value for
n half-hour tests. Table 2 provides these values
for various duration of tests in terms of quantiles
for 30-minute tests.

Table 2 Median values for various duration of
tests

one-hour runs ............ P=0.5"=0.71
1.5 hour runs ............ P=0.5"=0.79
two-hour runs............ P=0.5"=0.84
2.5hourruns............. P=0.5"=087
three hour runs .......... P=0.5"=0.89
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The aforementioned considerations can be
neatly summarised. The s factor based on n times
longer tests than the routine half-hour tests, de-
noted by s, equals

St = Fe(Hs = Hsos1). (15)

For example, Sz = Fc(Hs7o%), S =
Fe(Hssa%), Sy = Fc(Hsso%), and so on. To calcu-
late them we need to know corresponding quan-
tiles of the critical sea states. SEM, however,
provides only one of them — the median value
Hsso0.. How to get the other is briefly discussed
by Pawtowski (2004 and 2007).

The above observations can be strengthen
by the observation that equation (13) is the
mean height of the area under a graph of the
function F,(P) made against P". As can be seen
from Figure 6, the mean height approximates
well by a value at P" = 1.
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Figure 6.

We can see unexpectedly that the extension
of survival time has no more than a modest ef-
fect on the survival factor, and hence — a mod-
est effect on subdivision index A. Extending
time merely causes a shift from Hss, to higher
quantiles of the critical sea states when making
readings from the CDF of sea states at the mo-
ment of collision for the factor S. The said shift
is obviously towards smaller sea states (see
Figure 1), therefore the factor s drops. Changes,
however, are not dramatic, except cases with

poor stability (see Figure 4), with low critical
sea states. In the extreme, the shift can be of
the order 0.5 m. Irrespective of the definition a
minimum value of s =0.3, if IMO distribution
of the sea states is used.

It is worth mentioning that sn = E(P") is
not equal to S;;,", as one could think in the first
moment, since E(P") > [E(P)]". The difference
occurs for partial surviving factors, when the
range of sea states at the moment of collision
comprise for given KG-value the entire capsize
band, that is, when Hs for the upper boundary
of the capsize band is smaller than 4 m. Taking
S = Sa)'» where S, is the current ‘half-hour’ s
factor, leads in such cases to a large underesti-
mation of the surviving factor. The two quanti-
ties equal each other, when the entire range of
integration in equation (13) lies above 4 m (i.e.,
above the highest sea state that can occur at the
moment of collision) or for the ship with mar-
ginal stability. In the two extreme situation the
factor s =0.3 or 1. It assumes zero only when
the ship is unable to reach the final stage of
flooding, either due to sinking or capsizing be-
fore the completion of flooding.

5. CONCLUSIONS

We can conclude that at the end of the day
what matters for the safety of the ship is not so
much the survival time used for definition of
the s factor but the probability of surviving a
potential collision by the ship, termed as the in-
dex of subdivision A. The level of the index re-
quired by the current regulations should be sig-
nificantly increased, as demonstrated by
Pawlowski (2005). The recently adopted formu-
lation for R demonstrates lack of real under-
standing of what the probabilistic framework
was meant to provide and, therefore, out of
touch with reality.
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