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ABSTRACT  

The present paper employs nonlinear dynamics tools in order to investigate the dynamical 
characteristics governing the complex coupling of the heave, roll and pitch modes in head seas at 
some regions of the numerical stability map of a fishing vessel. Bifurcation diagrams and Poincaré 
mappings are computed and employed to investigate the appearance of multistability and chaos 
associated with increased values of the selected control parameter, the wave amplitude. The 
connection between these nonlinear characteristics and the coupled nature of the mathematical 
model are analyzed. Lyapunov exponents corresponding to the three coupled models are computed. 
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1. INTRODUCTION 

It is well known that parametric rolling in 
head seas may lead to large roll angles and 
accelerations in few cycles. Even though many 
studies on the subject simplify the analysis to a 
single degree of freedom, there is nowadays a 
wide acceptance of the relevance of the 
nonlinear coupling of the roll mode with heave 
and pitch.  

In previous studies Neves and Rodríguez 
(2005, 2006) have introduced a mathematical 
model in which the heave, roll and pitch 
motions are nonlinearly coupled to each other. 
Using this model they investigated the 
occurrence of head seas parametric rolling on a 
small fishing vessel. They showed, by means 
of numerical simulations, comparable to 
experimental results, the occurrence of strong 
dependence of the roll responses in head seas 
conditions on initial conditions, Neves and 
Rodríguez (2007). 

In order to investigate the quantitative and 
qualitative changes of parametric rolling with 

respect to the encounter frequency tuning and 
wave amplitude, Neves and Rodríguez 
(2007a,b) proposed the computation of 
analytical and numerical maps representing the 
boundaries of stability. The numerical maps 
aggregate information not only on the 
boundaries of stability, but also on the 
amplitude of roll response in the whole region 
of parametric amplification. 

The present paper investigates the 
dynamical characteristics governing the 
complex coupling of modes at some regions of 
the numerical stability map. Bifurcation 
diagrams and Poincaré mappings, 
Guckenheimer and Holmes (1983), Seydel 
(1988) are employed in order to investigate the 
appearance of multistability and chaos 
associated with increased values of the control 
parameter wave amplitude. The connection 
between these nonlinear characteristics and the 
coupled nature of the model are analyzed. 
Finally, Lyapunov exponents corresponding to 
the three coupled models are computed.  
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2. MATHEMATICAL MODEL 

Employing Taylor series expansions up to 
third order, Neves and Rodríguez (2005, 2006) 
expressed restoring actions in the heave, roll 
and pitch modes in a coupled way. Wave 
actions are taken into consideration not only in 
the Froude-Krilov plus diffraction first order 
forcing functions, but also in second and third 
order terms resulting from volumetric changes 
of the submerged hull due to vertical motions 
and wave passage effects. The model 
corresponds to an extension, both in the order 
of non-linearities and in the levels of coupling, 
of the model introduced by Paulling and 
Rosenberg (1959) and Paulling (1961). The 
equations are taken here in the explicit form 
described in detail in Neves and Rodríguez 
(2005, 2006). Thus, the non-linear heave, roll 
and pitch equations are introduced as: 
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On the left hand side of Eqs. (1-3), added 
masses and wave damping terms are assumed 
linear. A quadratic roll damping is considered 
in equation (2). The terms associated with 
variables θφ,,z )(t and wave elevation ζ  
correspond to the non-zero linear and non-
linear (up to third order) coefficients due to 
hydrostatic and wave pressure effects 
analytically derived by Neves and Rodríguez 
(2005, 2006), dependent on hull characteristics 
and on wave amplitude, frequency and time. 
On the right hand side of Eqs. (1-3), 
[ ]TtKtZ )()( WWW  represent linear wave 
excitation. Due to the particular wave incidence 
considered, 

Mt)(

WK 0=  has been assumed in Eq. 
(2). Once all the coefficients in Eqs. (1-3) are 
known, this set of three equations may be 
numerically integrated without difficulty. 

3. NUMERICAL LIMITS OF 
STABILITY 

Numerical simulations have been 
performed in the case of a fishing vessel 
denominated TS. Details of the ship are given 
in Fig. 1 and Table 1. Parametric rolling of this 
fishing vessel has been experimentally and 
numerically examined in detail in Neves and 
Rodríguez (2005, 2006), Neves et al. (2002). 
Numerical simulations performed using 
equations (1-3) have been successfully 
compared to experimental results for different 
wave conditions and ship speeds. It was 
verified that the fishing vessel employed in the 
present investigation is quite prone to strong 
parametric rolling in head seas. 

 
Figure 1. Hull form of transom stern (TS) 
fishing vessel. 
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Table 1. Ship main characteristics. 
Denomination Ship TS 
Overall length [m] 25.91 
Length between perpendiculars [m] 22.09 
Breadth [m] 6.86 
Depth [m] 3.35 
Draft [m] 2.48 
Displacement [ton] 170.3 
Longitudinal radius of gyration [m] 5.52 
Metacentric height [m] 0.37 

Table 2. Two sets of initial conditions. 

 I.C.#01 I.C.#02 

0 ( )z m  0.00 0.00 

0 ( / sec)z m&  0.01 0.01 

0 (deg)φ  2.00 2.50 

0 (deg/ sec)φ&  -0.50 -0.80 

0 (deg)θ  0.00 0.00 

0 (deg/ sec)θ&  0.01 0.01 

It is important to investigate parametric 
rolling not only at the exact encounter 
frequency tuning . In fact, large 
amplifications may take place in a quite broad 
spectrum of excitations frequencies. In order to 
comprehensively investigate the unstable 
regions Neves and Rodríguez (2007b) 
proposed the computation of numerical maps 
representing the boundaries of stability but 
containing information on the amplitude of roll 
response in the whole region of parametric 
amplification. Figure 3 shows the limits of 
stability of the fishing vessel in head seas at Fn 
= 0.30, corresponding to the first region of 
instability. The mapping is constructed by 
numerically computing the roll amplitude for 
different encounter frequencies and wave 
amplitudes. All points of the map are computed 
for the set of initial conditions I.C.#01 defined 

in Table 2. The intensity of the final roll 
amplitude is indicated by the color scale 
displayed on the right hand side of the figure. 

Four important features of the new limits of 
stability are: 

• the appearance of upper boundaries, 
indicating that for increased wave 
amplitudes, parametric rolling may not 
necessarily increase; in fact, it tends to 
disappear.   

• a general tendency of the unstable area to 
bend to the right, indicating that the exact 
tuning 0.2/ 4 =ne ww  is not necessarily the 
tuning with stronger amplifications. 

• smooth growth of roll amplitude at lower 
level of boundaries, abysmal (sudden) 
decrease in the upper boundaries. 

• upper boundaries with fractal geometry.  

• larger area of instability as the roll initial 
conditions were modified. 

The last three characteristics point out to 
complexities and intricacies that demand 
further investigations. A more detailed 
discussion of these features may be found in 
Neves and Rodríguez (2007a). In the next 
section some numerical tools of nonlinear 
dynamics will be employed in an attempt to 
clarify some of these topics. 

0.2/ =ww 4ne

 
Figure 2. Limits of stability, ship TS, Fn=0.30, 
I.C.#01. 
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4. BIFURCATION DIAGRAMS 

In Figure 2 the whole spectrum of exciting 
frequencies was explored. It has been observed 
that distinct characteristics are revealed. It is 
now desirable to get an in depth knowledge of 
dynamical characteristics as the parameter 
wave amplitude  is increased. So, if 
previously we have been more interested in the 
limits of stability as a whole, now we wish to 
have a closer look at some domains inside the 
unstable area. For this purpose, we will 
investigate the changes in dynamic 
characteristics as we cross the area inside the 
limits. A limited region of the map of limits of 
stability will be explored, that is, we will 
follow a vertical line defined at the tuning 

 in Figure 2. Aiming at 
demonstrating the influence of initial 
conditions on the solutions corresponding to 
points inside the area of the limits of stability 
we developed a brute-force algorithm for 
capturing the branching of solutions for a 
specified set of initial conditions. 

WA

0.2/ =ww 4ne

Figure 3. Heave, roll and pitch bifurcation 
diagrams, Fn=0.30, I.C.#01. 

Thus, using the W  parameter, the type of 
bifurcation diagrams as shown in Figure 3 for 
the heave, roll and pitch motions are developed 
for the same set of initial conditions used in the 
mapping of the limits of stability. These 
diagrams reveal the branching structure for 

distinct ranges of wave amplitude; qualitative 
and quantitative types of responses are noticed. 
These distinct results may be summarized as 
shown in Table 3. 

A

Table 3. Roll solutions for Fn=0.30. 

Range of Aw (m) Type of roll response 

0.0000 - 0.6036 Typically linear 

0.6037 - 0.6129 period-3 

0.6130 - 0.6626 Multistability, period-1

0.6627 - 0.6758 Multistability, period-2

0.6759 - 0.6782 Multistability, period-4

0.6783 - 0.67881 Multistability, period-8

0.67882 - 0.7000 Chaos 

Two interesting characteristics, not 
observable in the numerical limits of stability, 
are revealed by this bifurcation analysis. First, 
in the short second range of W  one observes 
the appearance of a solution with 3 periods that 
ends with a sudden appearance of a burst of 
non-periodic solutions. The period-3 solutions 
of heave, roll and pitch motions are illustrated 
in Figures 4-6, respectively. In each of them 
time history, phase plane and Poincaré map are 
shown. The appearance of non-periodic 
solutions is illustrated in Figure 7 which shows 
the roll time series, the corresponding phase 
diagram and Poincaré map for Aw=0.6129 m. 

A
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Figure 4. Heave motion, phase plane and 
Poincaré map, period-3 solution, Aw=0.605 m, 
I.C.#01. 

 
Figure 5. Roll (φmax=24.18°), phase plane and 
Poincaré map, period-3 solution, Aw=0.61 m, 
I.C.#01. 
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Figure 6. Pitch motion, phase plane and 
Poincaré map, period-3 solution, Aw=0.605 m, 
I.C.#01. 

 

Figure 7. Roll motion, phase plane and 
Poincaré map, Aw=0.6129 m, I.C.#01. Non-
periodic solutions. 
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The second interesting characteristic 
encountered is multistability with associated 
alternance of values. This dynamical feature 
arises immediately after the occurrence of a 
burst of non-periodic solutions, as shown in 
Figure 3. In the bifurcation diagram one may 
get the impression that the motion has migrated 
to a period-2 solution, but a detailed analysis 
will show that this is not the case. In fact the 
roll solutions in the third range of Aw are 
period-1, but as illustrated in Figures 8 and 9, 
the solutions continuously alternate from one 
attractor to another one which is situated close 
by, at each new value of the parameter Aw. In 
other words, roll motion either lives in one 
attractor or in the other, but always with a 
single period. Subsequently, for higher wave 
amplitudes, flip bifurcation will take place 
together with multistability: period-2, 4 and 8 
solutions will appear in sequence ending in 
chaos. 

 

Figure 8. Roll motion: (a) Aw=0.639 m, (b) 
Aw=0.6391 m. Multistability for two 
neighboring points, I.C.#01. 

It is interesting to observe that in this third 
range of Aw (0.6130 - 0.6626) the roll motion 
undergoes multistability with period-1 

solutions, as shown in Figures 8 and 9. But in 
this same range, the vertical motions have 
already undergone a period doubling 
bifurcation. This is shown in Figures 10 and 11 
for heave and pitch, respectively. Another 
aspect worth noting is that the alternating 
process does not contaminate these modes, 
Vivanco (2009).  

Subsequently, in the fourth range of Aw 
(0.6627 - 0.6758) the roll motion continues 
with multistability but responding with period-
2 solutions, as shown in Figure 12, whereas the 
heave and pitch motions now respond with 
period-4 solutions. The sequence of flip 
bifurcations soon leads the coupled system to 
respond with chaotic motions. Figure 13 
illustrates the period-4 roll motion and finally, 
Figure 14 shows the chaotic behaviour for 
Aw=0.683 m. The region with chaotic 
behaviour ends abruptly at the wave amplitude 
corresponding to the upper limit of stability of 
Figure 2.  

  

 

Figure 9. Roll phase planes: (a) Aw=0.639 m, 
(b) Aw=0.6391 m. Multistability for two 
neighboring points, I.C.#01. 
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Figure 10. Heave time history, phase plane and 
Poincaré map, period-2 solution, Aw=0.64 m, 
I.C.#01. 

 

 
Figure 11. Pitch time history, phase plane and 
Poincaré map, period-2 solution, Aw=0.64 m, 
I.C.#01. 
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Figure 12. Roll motion (φmax=24.27°), phase 
plane and Poincaré map, period-2 solution for 
Aw=0.67 m, I.C.#01. 

 
Figure 13. Roll motion (φ max=24.73°), phase 
plane and Poincaré map, period-4 solution for 
Aw=0.678 m, I.C.#01. 
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Figure 14. Roll motion (φ max=25°), phase 
diagram and Poincaré map, chaotic behaviour 
for Aw=0.683 m, I.C.#01. 

 

 

 

 

Figure 15. Roll bifurcation diagram, Fn=0.30, 
I.C.#02. 

To illustrate the dependency of the limits of 
stability on initial conditions, a second set of 
initial conditions (I.C.#02) defined in Table 2 is 
considered. When initial conditions are 
changed, the general bifurcation set is 
preserved, but it may be observed in the new 
bifurcation diagram that, as shown in Figure 
15, the range of responses with period-3 
solution simply is not reached. At 

0.617WA m=  the mo

m

tion jumps to a higher 
value. Instead of alternating continuously, the 
roll motion now undergoes period-1 motions 
with jumps, the first one producing a jump 
from 17 to 21 degrees. A second jump takes 
place at 0.648AW = , from 24 to 16 degrees. 
At W 0.66A 3m=  the motion begins a flip 
bifurcation at the same point as obtained in 
Figure 3. Period-2, 4, 8 solutions appear in 
cascade, at all stages featuring multistability. 
Finally, chaotic motions take place again for 

. 0.6788WA m≥

5. LYAPUNOV EXPONENTS 

Lyapunov exponents offer a quantitative 
measure of the sensitivity of a nonlinear 
dynamic system to initial conditions. As such, 
they characterize the chaotic behaviour of the 
system. The Lyapunov exponents provide 
information on the global stability of the 
system: values obtained for these exponents, 
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after the transients, are negative for stable 
zones, zero at bifurcation and positive in the 
chaotic zones. The method of trajectories 
developed by Wolf and Vastago (1985) is 
employed here in order to compute all the 
exponents relative to the heave, roll and pitch 
coupled motions for the tuning 0.2/ 4 =ne ww  
and different wave amplitudes. Figures 16 and 
17 show the six exponents for two wave 
amplitudes, Aw=0.62 m and Aw=0.63 m, 
respectively. In Figure 16 all exponents are 
negative, with the larger one being quite close 
to zero, whereas in Figure 17 this larger 
exponents is practically zero. Compiling the 
values of the Lyapunov exponents obtained for 
varying wave amplitudes at t=800 sec, Figure 
18 gives a complete picture of the evolution of 
the first three larger exponents, with the control 
parameter Aw, showing that at Aw=0.63 m the 
system undergoes chaos. This indicates that 
other attractors may be competing with those 
observed in Figures 3 and 15. In any case, this 
result demonstrates that the motions shown in 
Figure 7, corresponding to Aw=0.6129 m are 
non-periodic, not chaotic. 

 

 
Figure 16. Lyapunov exponents, Aw=0.62 m. 

6. CONCLUSIONS 

ynamical characteristics of these limits have 
been discussed.  
 

Numerical limits of stability for a fishing 
vessel at Fn=0.30 undergoing strong parametric 
rolling in head seas have been computed for a 
range of encounter frequencies. The main 

d

 
Figure 17. Lyapunov exponents, Aw=0.63 m. 

 

 
Figure 18. Lyapunov exponents (t=800 sec) for 
different wave amplitudes. 

For the encounter frequency tuning 
corresponding to the first region of instability 
of the Mathieu stability map, bifurcation 
diagrams for the heave, roll and pitch motions 
have been computed considering wave 
amplitude as control parameter. Interesting 
phenomena such as coexistence of attractors 
with period-3 solutions, appearance of a burst 
of non-periodic solutions, multistability with 
alternance, fold and flip bifurcation and chaos 
have been identified. The phase planes and 
Poincaré mappings showed that the period-3 
solutions and burst of non-periodic solutions 
are common to the three modes of motion 
considered. On the other hand, multistability 
with alternance only takes place for the roll 
motion. It was observed that when a different 
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set of initial conditions was considered, both 
the non-periodic motions and alternance 
disappeared. Finally, Lyapunov exponents have 
been computed for the same encounter 
frequency tuning, again taking the wave 
amplitude as control parameter. 
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