
GUIDELINE FOR PREPARATION 

 

Proceedings of the 10th International Ship Stability Workshop 
 

Numerical Simulation of Ship Seakeeping                            

by the SWENSE Approach 

B. Alessandrini, P. Ferrant, L. Gentaz 

Ecole Centrale Nantes, France 

Christian Behrault 

Principia, France 

 

ABSTRACT 

This paper documents the SWENSE (Spectral Wave Explicit Navier-Stokes Equations) approach, 

an original method for studying the simulation of 6 DOF ships in nonlinear waves under viscous 

flow theory. This work has been motivated by the accuracy and efficiency requirements for 

simulating hulls maneuvering in waves. The validation of the method for a diffraction case is 

presented and followed by a 2 DOF simulation of a Wigley hull in head regular waves. Results 

show an overall good agreement with experiments. The accuracy and effectiveness confirm the 

viability of the method.  
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INTRODUCTION 

Performance and seakeeping predictions are 

usually carried out in towing tank. However, in 

ship hydrodynamics, Computational Fluid 

Dynamics (CFD) is more and more used as a 

practical design tool. Main advantages of CFD 

are cost and time reduction and easier access to 

detailed flow field information.  

The complexity of simulating the behavior of a 

ship in seaways was historically overcome by 

separating the problem in many simpler 

analysis : resistance, propulsion, maneuvering 

and seakeeping. However all of those aspects 

are strongly coupled, CFD only simulates all of 

those aspects separately using adapted 

theories : 

� Resistance and propulsion analysis are 

more and more often addressed using 

viscous flow solvers based on Reynolds 

Averaged Navier-Stokes Equations 

(RANSE), because viscosity or flow 

separation effects play an important role in 

the physics of those phenomena. 

� Maneuvering and seakeeping problems are 

mainly solved by potential flow theory 

which is less time consuming and enables 

an accurate and efficient account of wave 

propagation phenomena. 

However neglecting viscous effects can lead to 

poor predictions especially for rolling motion. 

This is why a natural evolution for CFD is to 

try to address seakeeping and resistance 

problems within an unified approach by taking 

into account incident waves in performance 

predictions.  

The classical method used to simulate the 

viscous flow around a ship advancing in head 

waves is to impose an incident wave field at 

the inlet boundary. It is modeled as velocity 

perturbations which are added to the uniform 

stream. Those perturbations are usually derived 

from the linear potential flow solution for 

free-surface traveling waves. However such 

simulations require very large computing 
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resources because grids must be very refined 

between the location of the structure and the 

location of the wave generation systems (for 

structured or non-structured grids used with 

finite differences or finite volumes). This is 

indeed necessary to propagate the wave from 

the paddle to the structure with no noticeable 

damping. Moreover successive wave 

reflections on the body or on the paddle affect 

the incoming wave train and reduce the useable 

duration of the numerical simulation ; it is 

indeed very complicated to damp the diffracted 

field without modifying the incident waves. 

Furthermore, the generation of complex wave 

systems, will be very problematic with this 

method, especially for 3D sea states. However, 

RANSE seakeeping simulations of a ship 

advancing in head regular waves using this 

basic approach are realizable and have been 

done recently (Weymouth et al., 2005) 

showing quite accurate results compared to 

“state of the art” potential simulations. 

To overcome these difficulties an original 

formulation is used here by modifying the 

initial problem in order to solve the diffracted 

flow only. It consists in splitting all unknowns 

of the problem (velocities, pressure and 

free-surface elevation) into the sum of an 

incident term and a diffracted term. The 

incident terms are described explicitly using a 

nonlinear potential flow model. Thus only the 

part of the grid in the vicinity of the structure 

needs to be refined. Far from the body a 

stretched grid allows an efficient damping of 

the diffracted flow. In the method presented 

here called SWENSE (Spectral Wave Explicit 

Navier Stokes Equations) potential flow theory 

is used to compute the incident waves while 

viscous effects are taken into account by using 

a RANSE solver to obtain the diffracted field 

in the full domain. 

By using this approach it is possible to 

simulate efficiently and accurately the same 

incident waves as in potential approaches : 

regular wave trains, focused waves, irregular 

sea states in 2D or 3D … Moreover, the 

duration time of the simulations becomes 

practically unlimited because the incident 

waves and the diffracted field are separated so 

it is quite simple to damp the diffracted field 

only at the boundaries of the domain. 

Forward speed diffraction simulations have 

been done on a naval combatant in regular 

nonlinear head waves (Luquet et al., 2004) 

showing accurate results on the diffracted field 

and the forces components. Moreover the 

efficiency and accuracy of the method was 

showed at the last CFD workshop (Luquet et 

al., 2005) where our calculations were shown 

to be faster of a factor one hundred comparing 

to classical formulation (with the same level of 

accuracy on the force coefficients).  

The objective of the present work is to extend 

the applicability of the present approach to six 

degrees of freedom simulations (Jacquin et al., 

2005) showing accurate results on roll 

damping simulations. These developments will 

give access to full seakeeping calculations on 

realistic sea states. The first step presented in 

this work is the simulation of a Wigle with 

forward speed in head regular waves with two 

degrees of freedom (pitch and heave). 

THE SWENSE APPROACH 

This approach has one’s origin in the noticing 

that both a RANS solver and an inviscid solver 

are not well suited to study wave / body 

interactions because the first has difficulties in 

simulating the propagation of gravity waves 

and the second cannot take into account 

viscous effects which play an important role 

close to the body. Obstacles for RANS solvers 

are numerous. This is indeed necessary to 

propagate the wave from the paddle to the 

structure with no noticeable damping or 

gravity waves propagation requires a fine grid 

to avoid inherent numerical damping (almost 

60 points per wavelength). So meshes of 

classical RANSE applications to wave / body 

interactions are quite dense and as a 

consequence it increases the CPU time 

requirements. Moreover fast computations are 

critical when numerical simulations are used as 

a design optimization tool. 

On the other hand it becomes hard to avoid 

wave reflections at the outside boundaries 

since defining an open field condition is very 
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complicated. So successive wave reflections on 

the body or the paddle affect the incoming 

wave train and reduce the useable duration of 

the numerical simulation. 

Furthermore, 2D prescribed regular waves are 

easy to generate but the generation of complex 

wave systems will be very problematic with 

this method especially for oblique waves and 

3D sea states. 

Nevertheless, viscous flow solvers are 

recognized tools to achieve simulations on still 

water and inviscid solvers are applied 

successfully to complex waves generation and 

propagation. The idea presented here consists 

of combining those theories in a coupled 

manner in order to mix their advantages. 

Numerical techniques involving the coupling 

of potential / RANS solvers have been 

proposed in the past for ship hydrodynamic 

problems. These studies produced satisfactory 

results with a great improvement in 

computational time. Nevertheless those 

techniques were quite hard to carry out as they 

were essentially based on domain 

decomposition with an interface problem 

complicated to treat. What is more, this 

decomposition is not very accurate and stable 

for huge wave amplitudes. That is why the 

present method couple the potential / RANS 

solvers directly by a variable decomposition 

which avoid previous obstacles.  

 

 
 
Figure 1: Three steps of the SWENSE approach. 

The full simulation of wave / body interactions 

is decomposed into two successive calculations 

: a first one consisting of the generation and 

propagation of waves and a second one for the 

interaction of those waves with the body. The 

first problem which contains negligible viscous 

effects is then solved efficiently and accurately 

using an method based on potential flow 

theory. Thus the result obtained is used as the 

initial field for the RANS computation which 

gives the complementary part of the flow 

corresponding to the influence of the structure. 

As seen on Figure 1, we obtain the total field 

by summing those two parts. 

Using this kind of procedure the propagation of 

gravity waves is no more calculated in the 

RANS solver so quite all obstacles are 

overcome : 

The computational time is nearly the same as a 

computation on still water since the size of the 

mesh used is equivalent to those of a still water 

computation. Since the diffracted field is 

computed alone, it is easy to avoid reflections 

at the outside boundaries simply by damping it. 

The useable incident fields are only limited by 

the potential model used. So using HOS 

methods it is possible to generate regular and 

irregular 3D waves like prescribed focused 

wave packets or realistic sea-states. 

For comparison, at the last CFD Workshop 

held in Tokyo (2005), the use of our method 

reduces the CPU time requirement of a factor 

one hundred on a forward speed diffraction test 

case even if we assume the fact that using our 

meshes we do not represent accurately the 

farfield but only the nearfield and the forces 

coefficients. 

THEORY 

In this section, the numerical method is 

described. Governing equations are presented 

and followed by boundary conditions. The 

model used for the incident flow and the 

numerical method for solving the whole set of 

equations are presented. 

Coordinate system 

A space-fixed coordinate system (o- 1 2 3x x x ), see 

Figure 2, is defined with the (o- 1 2x x ) plane on 

the still free surface and the z–axis directed 
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vertically upwards. The origin of the 

coordinate system is placed at the intersection 

of the undisturbed free surface and forward 

perpendicular (FP) of the model and the 

1x -axis is directed downstream. 

Another coordinate system ( 1 2 3, ,ε ε ε ), fitted to 

the hull and free surface field is used to define 

the curvilinear computational domain. 
 

1x

2x  

3x

 

Figure 2: Definition of the coordinate system. 

RANS equations 

The SWENSE approach is applied here on a 

viscous flow solver which uses 3D RANS 

Equations under fully non-linear free-surface 

boundary conditions.  

The RANS equations are first defined in 

Cartesian coordinates (xi) and then are written 

in the non-orthogonal curvilinear coordinates 

( )iε  by using a partial transformation. Details 

of the coordinate transformation can be found 

in Alessandrini et al. (1995).  

Thus, the continuity and momentum equations 

in the transformed space are given by : 
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SWENS Equations 

The previous set of RANS Equations is 

modified in order to formulate a problem for 

the nonlinear diffracted flow. Primitive 

unknowns (Cartesian components of velocity 
iU , { }1, 2,3i∈  , pressure P  and free-surface 

elevation h ) are decomposed as follows : 
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Variables with the subscripts I and D represent 

incident and diffracted variables respectively. 

This decomposition is then introduced in the 

set of RANS equations (1) (2) assuming that 

the incident wave flow fulfils Euler equations: 
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We obtain a new set of equations called 

SWENS Equations where incident variables 

(dynamic pressure, velocities, free-surface 

elevations and their gradients) are explicit. 

Their values are directly computed at each time 



GUIDELINE FOR PREPARATION 

 

Proceedings of the 10th International Ship Stability Workshop 
 

step knowing kinematics and interface position 

of the incident flow. Then, only the diffracted 

variables are unknowns of the problem and 

have to be solved by the modified viscous 

solver. 

To conclude, the solution obtained is the 

solution of a modified problem where incident 

terms are known and their values are replaced 

in the SWENS Equations. There are no 

specific assumptions and the diffracted 

solution summed with the incident field give 

the solution of the initial problem. 

Modified boundary conditions 

The no-slip boundary condition generates the 

diffracted field from the hull : 

 
i i

D IU U= −             (6)      

 

The modified condition applied on the farfield 

verifies the decay of the diffracted field far 

from the body in the same way as previously : 

 

0i

DU =                              (7) 

 

Then nonlinear free surface boundary 

conditions are written in curvilinear 

coordinates where difftacted unknowns are 

considered under implicit form : 
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The components of the two vectors tangential 

and the one normal to the free surface can be 

respectively expressed using the covariant 

( )i ija a=  and contra-variant ( )i i

ja a=  vectors 

as following : 
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Then, the normal and tangential dynamic 

conditions respectively become : 
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Turbulence model 

Finally, to close the equations set we used a 

classical k ω−  turbulence model proposed by 

Wilcox (1988), introducing a specific 

dissipation rate ϖ  without low Reynolds 

formulation requirement.  

INCIDENT waves 

In order to apply the SWENSE method it is 

necessary to be able to know at each time step 

all the characteristics of the incident field 

(velocities, pressure, free surface elevations). 

A nonlinear model for incident regular 

wavetrains has been implemented in the 

present version of the code. Even if the field is 

only represented in the water, the solution is 

nevertheless independent of the Navier-Stokes 

grid and can be computed everywhere. Some 

attributes were essential in the choice of this 

model. Especially, in the SWENSE method, 

values of the incident field will be possibly 

needed above the undisturbed incident free 

surface, as the total free surface elevation can 

indeed be higher than the incident elevation. 

Both wave model described below gives access 

to a regular continuation of the incident fluid 

flow above the incident free surface, allowing 

an effective implementation of the SWENSE 

scheme. Furthermore, the velocity field 

generated by this method is infinitely derivable 

on the whole space and this continuity is 

essential for the implementation of the 

equations and the behavior of the 
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computations. 

So we consider a 2D non-linear regular 

incident wave train. To compute it, an 

algorithm based on the stream function theory 

(Rienecker & Fenton, 1981) has been 

implemented. This algorithm has been chosen 

as it can generate the solution of steadily 

progressing periodic waves on irrotational flow 

over a horizontal bed for a wide range of depth 

(but not for the solitary wave limit), amplitudes 

and wavelengths (in the limit of breaking 

waves) with huge accuracy (computer accuracy 

in fact) and fast computations. Figure 3 shows 

the successive wave profiles of a regular wave 

at increasing steepnes. For the last profiles on 

which the crest is very angular, 64 modes were 

needed to reach the computer accuracy 

although only 15 are required for most 

common steepnesses. 

Figure 3: Regular wave profiles up to the Stokes limit. 

This precision can be reached since the 

numerical method has as its only 

approximation the truncation of the Fourier 

series. Moreover, the computational time 

needed to obtain the solution of the incident 

field at each time step is negligible comparing 

to a classical RANSE iteration (less than 0.002 

%). 

It has been developed using potential theory 

and gives the numerical solution of steadily 

progressing periodic waves on irrotational flow 

over a horizontal bed. No analytical 

approximations are made. This method is 

based on the decomposition of the current 

function using Fourier series. The application 

of the nonlinear free surface boundary 

conditions and the Laplace equation gives a set 

of nonlinear equations from which unknowns 

are the amplitudes of each mode of the Current 

Fourier series and the free surface elevation at 

each collocation point. Since the number of 

collocation points is the same as the number of 

modes in the Fourier series, an iterative 

scheme based on a Newton method is then 

used to solve the nonlinear set of equations. 

The initial state is the linear solution based on 

a Airy wave and then successive results are 

obtained to converge to the fully nonlinear 

solution. 

Thus, with 
1x  the horizontal coordinate and 

2x  the vertical coordinate, the origin of the 

coordinate system is placed on the sea bed and 

moves at the same velocity than the waves. 

Considering this coordinate system, the 

movements of the progressing wave are steady. 

The velocity potential is then given by : 
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And the free surface elevation by : 
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Figure 4: Contouts of the axial velocity in the whole space 

for 2 0.1A = , 1.5λ = .  The bold line represents the free 

surface. 

Even if the field is only represented in the 

water, the solution is nevertheless independent 
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of the Navier-Stokes grid and can be computed 

everywhere. This attribute is essential because 

in the SWENSE method, values of the incident 

field will be possibly needed above the 

undisturbed incident free surface. That is why 

this point is decisive for the choice of the 

incident field model. Figure 4 shows the  

axial velocity field to demonstrate the 

continuity of the wave field under, through and 

also upon the undisturbed free surface. 

Six Degrees of Freedom Ship Motion 

The solver must be able to compute the 

motions of the ship under forces computed at 

each time step. This is done by solving the 

standard Euler’s law in the body fixed 

coordinate frame centered on G. The six 

components of ship velocity and position are 

then obtained and allow to move the ship by 

moving the grid, whereas the velocities are 

used for boundary conditions on the hull. 

 

 
 

Figure 5: Fixed reference and body fixed axis  

 

Figure 6: Decomposition of the rotation of the ship. 

Navier-Stokes equations are solved is the fixed 

general axis center on 0 (R0). This coordinate 

frame is Galilean, so acceleration terms of the 

fluid in the Navier-Stokes equations do not 

have to be taken into account, and then reduce 

the complexity of the problem. 

The Euler’s laws are solved in the body fixed 

coordinate frame center on G (RG).  

The rotation matrix used to transform 

coordinates from the fixed coordinate frame to 

the body fixed coordinate frame is defined by: 

 

3 1 2 1 3 2R R R R R R R R
P P P P→ → → →=         (14) 

 

The ship motion equations are written using 

the Euler’s law : 
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Where 

m is the mass of the ship 

RI  is the inertial matrix of the ship 

/G RV
r

 is the velocity vector of the center of 

gravity 

Rω
r

 is the angular velocity vector 

/ RF
r

 is the total forces acting the ship 

(hydrodynamic, aerodynamic, gravitational and 

external forces) 

/G RM
r

  is the total momentum acting on the 

ship  

 

After calculation of velocity components V
r

, 

positions of the ship are then directly 

integrated from ship velocities. 

The integration scheme is a predictor corrector 

scheme, based on explicit and implicit second 

order multi-step methods (Adams Baschford 

and Adams Moulton methods). 

First results on maneuverability simulations 

have been presented by Jacquin et al. (2006) 
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showing encouraging results. 

NUMERICAL DETAILS 

The SWENSE method is applied to the ICARE 

solver (Alessandrini and Delhommeau, 1995) 

developed through the support of the French 

Navy. It solves the Reynolds Averaged 

Navier-Stokes Equations written in convective 

form in an unsteady curvilinear computational 

space fitted at each iteration to the hull and to 

the free surface. Fully non linear free surface 

boundary conditions are implemented using an 

efficient fully coupled algorithm. Turbulence 

effects are taken into account through classical 

k-ω turbulence model. An original 

fully-coupled method is used to solve the 

discretised set of equations : at each iteration 

all equations (RANS Equations, pressure 

equation, free-surface boundary conditions, 

no-slip conditions) are assembled in a single 

large and sparse linear system which is solved 

using a bi-CGSTAB algorithm with an 

incomplete LU preconditioning. This method 

offers a better accuracy and efficiency than 

weak coupled algorithms (SIMPLER, PISO), 

especially for the convergence of the 

velocity-pression coupling. 

Finally the combination of incident potential 

flow and RANS solvers for the diffracted 

problem can be summarized as follows : At 

each time step of the computation the geometry 

of the fluid domain is updated. The kinematics 

of the incident wave flow is calculated on this 

updated grid and then the diffracted problem 

defined by the set of SWENS Equations (4) to 

(11) is solved using the viscous flow software 

described previously. The diffracted solution is 

then summed with the incident terms in order 

to obtain the total field. Considering the total 

free surface elevation it is now possible to 

update the fluid domain again. 

RESULTS 

Regular Head Waves on the DTMB 5415 

The numerical procedure has been further 

developed to simulate the forward speed 

diffraction on a naval combatant in regular 

nonlinear head waves (Luquet et al., 2004) 

showing accurate results on the diffracted field 

and the forces components. Unsteady 

resistance, heave force, pitch moment, nominal 

wake and free-surface elevations have been 

compared to experiments by Gui et al. (2001) 

and the efficiency and accuracy of the method 

was showed at the last CFD workshop (Luquet 

et al., 2005) where our calculations were 

shown to be faster by a factor one hundred 

comparing to classical formulation (with the 

same degree of accuracy on the force 

coefficients). Results on the DTMB5415 

presented here concern the added resistance in 

waves compared to experiments. This results 

are quite difficult to obtain and show the 

accuracy of our formulation. 

We will focus on the resistant coefficient 

( )TC , heave force coefficient ( )HC , pitch 

moment coefficient ( )MC  defined as follows : 

 

( ) ( )
SU

tF
tC X

T 25.0 ρ
= ( ) ( )

SU

tF
tC Z

H 25.0 ρ
= ( ) ( )

SLU

tM
tC Y

M 25.0 ρ
=  (16)

                                                    

where XF , YF , YM  and z  are the measured 

time-varying resistance, heave force, pitch 

moment and free-surface elevation, 

respectively. S  is the wetted surface area for 

the static condition and ρ  is the water 

density. The previous variables are compared 

to experiments in terms of Fourier components. 

Results on DTMB5415 

In the present computation the medium 

amplitude test case of the experiments 

( 1.5Lλ = , 0.025Ak =  and 0.28Fn = ) has been 

simulated using the regular wave model in 

order to evaluate the added resistance in head 

waves. Added resistance due to waves refers to 

ocean waves and is not to be confused with 

wave making resistance. Ocean waves cause 

the ship to expend energy by various effects : 

for example the wetted surface area of the hull 

increases so causes added viscous resistance. 

This component of resistance can be very 

significant in high sea states and has a 

particular nonlinear behavior. 
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Classically, the added resistance in heading 

waves is obtained by subtracting the still water 

resistance from the measured mean total 

resistance at the speed concerned. So, two 

computations have been done with the same 

conditions for trim and heave at the same 

Froude number for each steepness at three 

wavelength. Table 1 resumes the results 

obtained. The error is computed as 

100exp*/exp)( −num and the last column 

represents the amplitude of the added 

resistance comparing to the total mean 

resistance. 

Table 1: Added resistance compared to experiments. 

   
,T addC  

 

Fn  Ak  Lppλ  Num. Exp. Err.(%) 
, ,0T add TC C  (%) 

0.5 0.00002 0.000013 35 0.2 

1.0 0.00022 0.00015 46 2.6 

0.025 

1.5 0.00042 0.00040 5 4.5 

0.5 0.00022 0.00017 29 2.5 

1.0 0.00085 0.0008 6 8.8 

0.05 

1.5 0.00179 0.00178 1 17 

0.5 0.00043 0.00041 5 4.5 

1.0 0.00182 0.00192 5 17 

0.28 

0.075 

1.5 0.00392 0.00401 2 31 

 
 

 

As expected it appears that the added 

resistance in heading waves is positive and 

increases following the waves amplitude from 

0.2 % to 31 % of the mean total resistance. It 

varies as the squared wave amplitude for all of 

the cases presented in this table (if the 

numerical accuracy is sufficient). 

First computations have been done using the 

classical steepness 0.025Ak =  and the results 

were quite inaccurate. But considering the 

amplitude of the added resistance compared to 

the total mean resistance, we have noticed that 

it was only 2-5 % of ,0TC . Moreover, the 

uncertainty of the numerical code appears in 

the twice computations used to deliver the 

added resistance, so is multiplied by a factor 

two about the added resistance. Finally it is 

obvious that trying to obtain accurate 

prediction of the added resistance at this 

steepness is inappropriate as the result is under 

the uncertainty of the numerical code. 
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Figure 7: Illustration of Table 1. 

Computations at higher steepness (0.05 and 

0.075) show accurate predictions of the added 

resistance (error below 5 %) as the ratio 

, ,0T add TC C is up to 10 %. 

Table 2 presents the results for increasing Fn  

at 0.025Ak =  and / 1.5ppLλ = . The behavior of 

the added resistance is well predicted by our 

method with a small discrepancy at low Froude 

number. The added resistance decreases 

regularly with increasing Froude number. 

Wigley with 2 DOF in regular head waves 

The method is applied here to the interaction of 

a nonlinear regular wave train with a ship with 

two degrees of freedom (pitch and heave) in 

deep water. The selected geometry is a Wigley 

hull and is supposed to have a forward motion 

at constant speed. 
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Table 2: Added resistance compared to experiments for  

,T addC  
 

Num Exp 

0.19 0.00073 0.00091 

0.28 0.00042 0.00040 

0.34 0.00038 0.00040 

Fn  

0.41 0.00031 0.00029 

 
 

0.025Ak =  and / 1.5ppLλ = . 

 

Figure 8: Illustration of Table 2 

This geometry has been chosen because many 

experiments have been carried out in the Delft 

University of Technology report by Journee 

(1992). The validation data includes forward 

speed diffraction, forced heave or pitch and the 

three degrees of freedom at forward speed. All 

measurements have been done for four wigley 

hulls and many incoming wave amplitudes and 

wavelengths. The incident field is always a 

regular wave train. 

First computations have been carried out for 

the forward speed diffraction case and results 

on the first harmonic forces are shown on 

Table 3. Simulations have been done for a 

non-dimensional incoming wave amplitude 

0.01734ppH L =  at a Froude number 0.3Fn = . 

As expected results are excellent so we are 

confident on the ability of our method to 

predict the behaviour of the hull with degrees 

of freedom. 

Simulations including the two degrees of 

freedom have then been carried out. Pitch θ  

and heave β  motions are expressed 

respectively in terms of the coefficients Y3 and 

Y5 : 

 

( ) ( )
3

2

t
Y t

A

β
=  ( ) ( )

5
2

t
Y t

Ak

θ
=        (44)    

Table 3: Amplitude of the first harmonic of the resistance 

C11 , the heave force C13 and the pitch moment 

C15. 

 λ/L =0.5 λ/L =1 λ/L =2 

 num exp num exp num exp 

C11 0.0625 0.066 0.247 0.259 0.710 0.713 

C13 0.108 0.118 0.210 0.205 0.593 0.577 

C15 0.0272 0.026 0.304 0.316 0.634 0.658 

 

Figure 9 shows the wave pattern for λ/L = 1, 

and Figure 10 the associated motions witch 

reach a periodic state. Notice that 12 periods of 

incoming waves have been computed in less 

than 10 hours using a light mesh (covering an 

half domain) of 120 000 nodes. It is noticeable 

that the duration of the simulation in waves 

using the SWENSE method is the same as a 

classical RANSE simulation. It is indeed quite 

not much time consuming to realize resistance 

tests on waves than on still water using this 

approach. The duration of computations is 

considerably reduced comparing to classical 

approach.  

 

 

Figure 9: Wave pattern of the Wigley hull in head regular 

waves free to heave and pitch with forward speed 

for / 1ppLλ =  

 

 

Figure 10: Time history of heave (solid line) and pitch line) 

for / 1ppLλ = . 
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Figure 11: Predicted pitch motion on 24 incoming waves. 

Table 4: Amplitude and phase of the heave and pitch 

coefficients. 

 EXP SWENSE Strip 

Theory 

Y3 1.28 1.14 1.31 

3Yφ  343 335 343 

Y5 2.21 2.09 1.5 

5Yφ  13 13 45 

 

Moreover, Figure 11 shows the predicted pitch 

motion for a long simulation (almost 24 

incoming waves) and it is clear that the motion 

is well established. The signal is fully periodic 

which illustrates the fact that the absorption of 

the diffracted field is efficient so accurate long 

simulations will be possible with no particular 

care. Table 4 gives values of the amplitude and 

phase of the first harmonic of the pitch and 

heave coefficients. Results from experiments, 

present approach and strip theory computations 

are given showing the ability of the SWENSE 

approach to catch the ship motions with 

accuracy even on this light mesh. It is clear 

that results from our method improve those 

coming from strip theory at this resonant case. 

CONCLUSION AND FUTURE WORK 

In this paper SWENSE method has been 

extended to simulations with DOF on regular 

waves by solving the motions of the ship under 

forces computed at each time step. First 

comparison even on a light mesh seems to give 

accurate results on motion coefficients with 

low CPU time requirements. In addition, the 

irregular waves will be added to the model by 

interfacing an advanced HOS model 

(Bonnefoy, 2003; Bonnefoy et al., 2004; 

Ducrozet et al., 2005) with the software 

solving SWENSE equations. The 

characteristics of accuracy and efficiency will 

be studied using this new wave model and 

detailed comparisons with experiments will be 

undertaken and presented in the near future. 
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