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ABSTRACT

It is common knowledge that the spectra of ship motions at non-zero speed and in follow-
ing/quartering seas diverge around a fixed frequency. This work examines perhaps less known
implications of this divergence on temporal dependence of motions and their squares, and on
setting confidence intervals for means and variances of motions. The presented developments
are largely based on what is already known and studied elsewhere in connection to the so-called
(cyclical) long memory phenomenon.
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1 INTRODUCTION AND MOTIVATION

This work originated from questions around
the following problem. When considering ship
motions in certain conditions, their sample
autocorrelation functions (ACFs) happen to
decay very slowly as the time lag increases.
For example, Figure 1 presents one such ACF
for the pitch motion from a 30-minute-long
record. This is for the flared variant of the
ONR Topsides Geometry Series (Bishop et
al. [3]), in sea state 6, the heading of 45◦,
and traveling at 25 kts. The simulations were
carried out through Large Amplitude Motion
Program (LAMP; Lin and Yue [8], Shin et
al. [11]). The lag on the horizontal axis has
seconds as units. Note that the temporal
dependence is quite strong at lags up to 10
minutes. In contrast, typical ACFs in many
other conditions (not shown here for shortness
sake) decay much faster, with the dependence
visibly persisting for only 30–60 seconds.

The strong temporal dependence in Figure
1 affects downstream tasks when working with
respective motions. One of the tasks is setting
confidence intervals for means, variances and

other basic quantities of the motions. Pro-
cedures for setting these intervals have been
developed (Pipiras et al. [9]) and generally
work well for ACFs with fast decay. (These
will be discussed in more detail below.) But
when dependence is strong, we find that the
same procedures no longer work. Part of the
motivation for this study was precisely this
question of setting confidence intervals in the
presence of strong temporal dependence as in
Figure 1.
How does strong temporal dependence

arise? How does one set confidence intervals
in this scenario? Is there an underlying math-
ematical theory supporting the methodology?
These are the questions addressed in this work.
Some of their aspects will not be resolved com-
pletely, but we believe that this work points
in the right directions and opens doors for
interesting future investigations. What will
be presented below is relatively well-known in
statistics (especially time series), signal pro-
cessing and other communities, but might be
less known in naval architecture.

More specifically, in Section 2 and Appendix
A, we recall first the effect of non-zero speed
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on spectra of ship motions and wave eleva-
tion. It is known that the spectra diverge
around certain fixed frequency. Implications
of this divergence on autocovariance function
(ACVF) of motions and their squares are prob-
ably less known, but can be found in Section
3. How the resulting spectrum and ACVF
are affected by the underlying spectrum and
speed is examined in Section 4. Implications
for estimation of means and variances of mo-
tions are discussed in Section 5. A simulation
study is presented in Section 6. We conclude
with Section 7.

Figure 1: Autocorrelation of pitch motion.

2 LINEAR SHIP MOTIONS AND WAVE
ELEVATION AT NON-ZERO SPEED

We shall assume a linear stationary regime for
ship motions and underlying wave excitation.
We will be switching back and forth from the
time to frequency domain, using the following
quantities and relations. A stationary process
X = {Xt}t∈R has constant mean µX = EXt

and its ACVF

RX(h) = EXtXt+h − µ2
X (1)

depends on lag h ∈ R alone. The spectrum
(spectral density) of X is defined as

SX(w) = 1
π

∫
R
e−iwhRX(h)dh (2)

= 2
π

∫ ∞
0

cos(wh)RX(h)dh, w ∈ R,

and satisfies

RX(h) = 1
2

∫
R
eihwSX(w)dw (3)

=
∫ ∞

0
cos(hw)SX(w)dw.

Let ζ = {ζt}t∈R denote a stationary wave
height process, having the (point) spectrum
Sζ(w). Let Y = {Yt}t∈R denote any of the
resulting ship motions, having the spectrum
SY (w). In the linear regime and at zero speed,
we have

SY (w) = |ΦY (w)|2Sζ(w), (4)

where |ΦY (w)|2 is the squared modulus of the
transfer function (RAO), and by (3),

RY (h) =
∫ ∞

0
cos(hw)SY (w)dw. (5)

In the case of non-zero forward speed, the
relation (5) generalizes to

RY (h) =
∫ ∞

0
cos(hwe)SY (w)dw, (6)

where

we = w − qw2 = w − U0

g
cosµ0w

2 (7)

is the encounter frequency with speed U0,
heading µ0 and acceleration g due to gravity.
These developments are well-known, appear
in the Principles of Naval Architecture (Lewis
[7]) and other textbooks, and go back at least
to Denis and Pierson [4].
Henceforth, we focus on the case

µ0 ∈ (−π2 ,
π

2 ) ⇔ q > 0, (8)

that is, following or stern-quartering seas. By
making suitable changes of variables, one can
rewrite (6) in the form (3) as

RY (h) =
∫ ∞

0
cos(hν)S̃Y (ν)dν, (9)

where S̃Y (ν) is the true spectrum of Y (as
opposed to SY in (6) sometimes referred to as
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pseudo-spectrum). As shown in Appendix A,
we have:

S̃Y (ν) = SY (w1(ν)) + SY (w2(ν))
(1− 4qν)1/2

+ SY (w3(ν))
(1 + 4qν)1/2 , (10)

for ν ∈ (0, 1/4q), where wj(ν), j = 1, 2, 3, are
given in (43)–(45), and

S̃Y (ν) = SY (w3(ν))
(1 + 4qν)1/2 , (11)

for ν ∈ (1/4q,∞).
Note that according to (10), since

w1(1/4q) = w2(1/4q) = 1/2q and if
SY (1/2q) 6= 0, j = 1, 2, the spectrum S̃Y (ν)
diverges as ν ↑ 1/4q. The divergence is well-
recognized and is illustrated in the Principles
of Naval Architecture (Lewis [7], p. 89). But
consequences of this divergence may not be as
known, and are discussed in the next sections.
Remark. Taking |ΦY (w)| ≡ 1 in (4), the

discussion above applies for the encountered
wave height itself, which we will use for il-
lustrations here and below. Consider, for ex-
ample, the Bretschneider spectrum with a
significant wave height of 7.5 meters, a modal
wave period of 15 seconds, corresponding to
sea state 7. Take the heading of µ0 = 0 de-
grees and speed of U0 = 12 knots. Figure 2
depicts the original (pseudo) Bretschneider
spectrum and the true spectrum transformed
according to (10)–(11). The true spectrum
diverges around the value ν = 0.433, with the
divergence depiction limited by the chosen
resolution on the horizontal axis.

3 IMPLICATIONS FOR AUTOCOVARI-
ANCES OF MOTIONS AND THEIR
SQUARES

We shall indicate here several implications
of the divergence of the spectrum around a
fixed frequency in (10) for dependence in the
time domain. We shall employ arguments
lacking full rigor but will also point to sources

Figure 2: Transformed (true) and original
(pseudo) spectra for wave elevation.

with more formal derivations in special cases.
Following (10), consider the case of a spectrum
S(ν) satisfying

S(ν) ' C(ν0 − ν)−2δ, as ν ↑ ν0, (12)

where δ ∈ (0, 1/2) and ν0 > 0 is fixed. In the
case (10),

δ = 1
4 , (13)

but it will be instructive to keep (12) more
general. Note also that δ > 0 ensures the di-
vergence of S(ν), and δ < 1/2 its integrability
around ν = ν0.
Turning to the time domain, consider the

integral defining R through (3) around the
frequency ν0. Observe that, for small fixed
ε > 0,∫ ν0

ν0−ε
eihνS(ν)dν ' C

∫ ν0

ν0−ε
eihν(ν0 − ν)−2δdν

= Ceihν0
∫ ε

0
e−ihzz−2δdz

= Ceihν0h2δ−1
∫ εh

0
e−ixx−2δdx, (14)

after making the changes of variables ν =
ν0 − z and hz = x. As h→∞,∫ εh

0
e−ixx−2δdx→

∫ ∞
0

e−ixx−2δdx =: Aδ,
(15)
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where the latter integral Aδ is well-defined
as an indefinite integral and, in fact, can be
evaluated explicitly (Gradshteyn and Ryzhik
[6], Formulas 3.761.4 and 3.761.9). Putting
(14) and (15) together and writing Aδ = aδe

iφδ

in polar coordinates implies that, as h→∞,∫ ν0

ν0−ε
eihνS(ν)dν ' Caδe

i(hν0+φδ)h2δ−1. (16)

Taking the real part of (16) suggests that
under (12), the ACVF of the underlying pro-
cess satisfies, as h→∞,

R(h) ' CR cos(ν0h+ φδ)h2δ−1, (17)

where CR = Caδ. Note that (17) implies∣∣∣∣ ∫ ∞
0

R(h)dh
∣∣∣∣ <∞, ∫ ∞

0
|R(h)|dh =∞.

(18)
Because of the second relation in (18) and
the cyclical nature of (17), the case (17) is
known in the literture as cyclical long memory
(long-range dependence). In that sense, the
motions (at zero speed, following/quartering
seas) exhibit cyclical long memory. Note that
it stands in sharp contrast to many Markovian
systems where the decay of ACVF is usually
exponentially fast, as opposed to algebraically
slow as in (17).

In discrete time, canonical examples of pro-
cesses with cyclical long memory are Gegen-
bauer processes. See, for example, a review
paper by Dissanayake et al. [5] and references
therein. Their continuous-time analogues are
considered in e.g. Anh et al. [1]. For these
processes, it was proved rigorously that (12)
implies (17).

As we shall consider the sample variances of
motions, we also need to understand the impli-
cations of (12) or (17) on the motions squared.
This can be done easily assuming Gaussian-
ity of the underlying process (not much can
be done in general without this assumption).
Indeed, let R2(h) denote the ACVF of the pro-
cess squared. Under Gaussianity, it is known
that

R2(h) = 2(R(h))2 (19)

(e.g. Pipiras and Taqqu [10], Proposition
5.1.1). Hence, (17) implies that, as h→∞,

R2(h) ' C2
R cos2(ν0h+ φδ)h4δ−2

= C2
R

2 h4δ−2 + C2
R

2 cos(2ν0h+ 2φδ)h4δ−2.

That is, as h→∞,

R2(h) ' CR,2h
2d−1+CR,2 cos(2ν0h+2φδ)h2d−1,

(20)
where

d = 2δ − 1
2 (21)

is another convenient exponent to introduce.
Note that

d ∈ (0, 1
2)

d = 0
d ∈ (−1

2 , 0)

⇔

δ ∈ (1

4 , 1)
δ = 1

4
δ ∈ (0, 1

4)

 . (22)

As a consequence, we have∫ ∞
0

R2(h)dh =∞, (23)

when d ∈ (0, 1
2) (δ ∈ (1

4 , 1)) or d = 0 (δ = 1
4).

When d < 0, the integral in (23) is finite.
This case is known as short memory (short-
range dependence). The case (23) is known
as long memory (long-range dependence), and
is well understood by now (e.g. Beran et al.
[2], Pipiras and Taqqu [10]). In that sense,
the squared motions (at zero speed, in follow-
ing/quartering seas) exhibit long memory.
Remark. According to (13), the case of

interest here is d = 0 or δ = 1/4. By (22),
this case is at the boundary between short
and long memory. This boundary case has
received less attention in the literature than
the long memory case d > 0.

4 ROLES OF UNDERLYING SPECTRUM
AND SPEED

Figure 3 illustrates the relation (17) in the
standardized form of the ACF for the spec-
trum given in Figure 2. Note the slow decay
of the ACF as lag increases – this is not a
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numerical error. Note, however, that the slow
decay pattern in Figure 2 is different from
that in Figure 1: whereas the slow decay in
the latter figure has large magnitudes (rela-
tive to the largest value of 1) over a range of
lags, the magnitudes are relatively small in
the former figure. In fact, this results from
the interplay of the underlying spectrum and
speed (and heading).

Figure 3: ACF for encountered wave elevation,
having spectrum in Figure 2.

Indeed, Figures 4 and 5 present similar spec-
tra and ACFs plots but for several speeds, 10,
13 and 15 kts. (The spectra were normalized
in the plot so as to integrate to 1 or, equiva-
lently, for the processes to have variances 1.)
Note that the relative magnitudes of the ACF
values is largest at 15 kts, with the pattern
more akin to Figure 1. Why is that the case,
and how does it relate to the shape of the
spectrum?
To answer those questions, look back at

Figures 2 and 3. Note that the transformed
spectrum in Figure 2 consists of two com-
ponents: the divergent power-law compo-
nent from around the frequency ν = 0.4
to ν = 0.433, and the humplike component
(another peak) from around the frequency
ν = 0.2 to ν = 0.4. Denote these compo-
nents as Sd(ν) and Sh(ν), and think of their
sum Sd(ν) + Sh(ν) as being the whole spec-
trum in Figure 2. Now, the corresponding
ACVF is Rd(u) + Rh(u), where R’s are the

Figure 4: Spectra for encountered wave eleva-
tion at several speeds.

Figure 5: ACFs for encountered wave eleva-
tion at several speeds.

ACVFs of S’s. If we standardized R’s to ACFs
so that R(0) = 1, the ACVF is proportional
to

adRd(u) + ahRh(u), (24)
where ad =

∫∞
0 Sd(ν)dν, ah =

∫∞
0 Sh(ν)dν. In

Figure 2, ad is much smaller than ah. The
ACF Rh(u) is expected to decay to 0 quickly.
The ACF Rd(u), on the other hand, is ex-
pected to decay slowly and have values with
relatively large magnitudes. This is akin to
what we see in Figures 4 and 5 for 15 kts. By
combining the two observations for (24), we
deduce the pattern seen in Figure 3.

Said differently, we emphasize that the slow
decay in (17) is present for any q > 0, that
is, any non-zero speed. Whether the slow
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decay of the ACF will have relatively large
magnitudes across a wide range of lags, on
the other hand, depends on the shape of the
transformed spectrum as discussed above.

5 IMPLICATIONS FOR ESTIMATION OF
MEANS AND VARIANCES

The established long memory in (23) has im-
plications for setting confidence intervals for
the variances. To get to that point, we shall
take a slightly broader path and make addi-
tional comments. Both the sample mean and
variance of motion Y involve averaging

XT = 1
T

∫ T

0
Xsds, (25)

where T is the observation window length
(with Xs = Ys for mean, and in addition Xs =
Y 2
s for variance). In practice, the integral in

(25) is discretized. The confidence interval for
the mean µX = EXs is usually determined by
the variability of Var(XT ). The latter can be
computed as

Var(XT ) = 2
T

∫ T

0
(1− h

T
)RX(h)dh (26)

(e.g. Pipiras et al. [9]). Note that when∫∞
0 RX(h)dh is finite, the relation (26) be-
comes: for large T ,

Var(XT ) ' 2
T

∫ ∞
0

RX(h)dh. (27)

The quantity ΠX = 2
∫∞

0 RX(h)dh is known as
the long-run variance, and there are methods
to estimate it in practice as Π̂X (e.g. Pipiras
et al. [9]). The confidence interval for µX is
then set as

XT ± bα
Π̂1/2
X

T 1/2 , (28)

where bα is a critical value at confidence level
α (e.g. 1.96 at α = 0.95 or 95% confidence
level in the normal case). As the long-run
variance ΠX is finite for cyclical long memory
by (18), this would be the confidence interval
to use in that case.

But the situation is more involved when
X = Y 2 is the square of the motion because
the long-run variance can now be infinite by
(23). The behavior of (26) can nevertheless
be analyzed in this case as well, and we will
do so only when δ = 1/4 (d = 0) as suggested
by the ship motions application.

Asymptotic approach

We may focus just on the first term in the
last expression of (20) and assume that, for
large h,

RX(h) ' C2h
−1, (29)

since for the second term,
∫∞

1 cos(2ν0h +
φδ)h−1dh is finite. Then, under (29), (26)
becomes, for large T ,

Var(XT ) ' 2C2

T

∫ T

1
h−1dh− 2C2

T
,

that is,

Var(XT ) ' 2C2 log T
T

. (30)

This suggests to set the confidence interval as

XT ± bα
(2Ĉ2 log T )1/2

T 1/2 , (31)

where Ĉ2 estimates C2 and bα is a suitable crit-
ical value as in (28). Note the presence of the
additional term (log T )1/2 in (31), compared
to the more conventional cases of just having
T 1/2 as in (28). Estimation of the constant
C2 is discussed below.

Refined approach

The confidence intervals (31) will not be
satisfactory (in fact, too narrow) in the cases
where the magnitudes of ACVF values are
large as in Figure 1 (or Figure 5 with 15 kts).
The issue is with the asymptotic nature of
(30) as follows. To simplify the exact relation
(26) slightly, write

Var(XT ) ' 2
T

∫ T

0
RX(h)dh
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= 2
T

∫ T0

0
RX(h)dh+ 2

T

∫ T

T0
RX(h)dh (32)

for fixed T0. The same argument as for (30)
can be made to write

Var(XT ) ' 2
T

∫ T0

0
RX(h)dh+ 2C2 log(T/T0)

T
.

(33)
For fixed T0, the second term in (33) will dom-
inate the first term for large T because of the
extra factor log T . However, for finite T , es-
pecially when the magnitudes of the ACVF
values are relatively large, the first term in
(33) can not be discarded. Put differently, the
relation (29) used for all h’s in the asymp-
totic approach is not a good approximation to
ACVF for smaller h’s. This suggests to esti-
mate the variance of the sample mean through

V̂T := 2
T

∫ T0

0
R̂X(h)dh+ 2Ĉ2 log(T/T0)

T
(34)

for some fixed T0, and set the confidence in-
terval as

XT ± bαV̂ 1/2
T , (35)

where bα is a suitable critical value.
The term R̂X(h) in (34) should estimate

the ACVF RX(h). When X = Y 2 and Y is
consistent with the assumption of Gaussianity,
in view of (19), we suggest setting

R̂X(h) = 2(R̂Y (h))2, (36)

as opposed to estimating the ACVF directly
for X = Y 2. The reason is that for a Gaussian
process Y , the direct estimation of the ACVF
of Y 2 is rather biased downwards. This is
illustrated in Figure 6 plotting the ACVF of
a wave height squared X = Y 2 in the same
conditions as for Figure 1, estimated directly
and through the formula (36). Because of the
downward bias, if direct estimation is used,
the estimated variance in (34) will be too
small and the resulting confidence interval in
(35) be too narrow. Note that this is particu-
larly acute for slowly-decaying ACVFs with

Figure 6: The ACVF of a wave height squared
X = Y 2, estimated directly and through the
formula (36).

relatively large magnitudes, since the biases
accumulate across a range of h’s.
Estimation of C2

How could one estimate the constant C2 in
(29)? For similar problems in the long memory
context, it is known and not advisable to do
this in the time domain. A better practice
is to translate (29) to the spectral domain,
and to estimate C2 therein. In view of (2), we
expect that as w → 0,

SX(w) ' 2C2

π

∫ ∞
1

cos(wh)h−1dh

= 2C2

π

∫ ∞
w

cos(z)z−1dz ' 2C2

π
(− logw).

(37)
That is, the spectrum of X diverges around
w = 0 as (− logw).
In practice, the relation (37) suggests to

estimate C2 as

Ĉ2 = Ĉ2(m) = π

2

∑m
k=1 ŜX(wk)∑m

k=1(− logwk)
, (38)

where ŜX(wk) are estimated spectrum values
over a grid of frequencies w1, . . . , wm close to 0.
(In practice, for discrete data, wk’s are taken
as the Fourier frequencies.) The choice of m
and the performance of confidence intervals
(35) are examined in the next section.



Proceedings of the 18th Int. Ship Stability Workshop, 12-14 September 2022, Gdansk, Poland

6 SIMULATION STUDY

We assess here the performance of the pro-
posed confidence intervals (35) through a sim-
ulation study, as well as discuss a number of
related issues. We focus on the pitch motion
and consider the same setting as in Figure 1.
In the dataset we work with, there are 10,000
records of motions, each 30-minutes long. We
use all records to calculate what we consider
the true variance of pitch. The true variance
is used to check the performance of confidence
intervals constructed for individual records. If
the confidence intervals work well, they should
capture the true variance around the number
of times which corresponds to the confidence
level of the confidence intervals. E.g. with
95% confidence interval and 100 records, we
expect that number to be close to 95. The
proportion of times will be referred to as a
passing rate.
Figure 7 presents the proposed confidence

intervals for the first 100 records. Each circle
point is the actual record variance and the
vertical line is the associated 95% confidence
interval. The horizontal line represents the
true variance. The passing rate is 0.91. It sug-
gests that the confidence intervals are slightly
anti-conservative but still perform reasonably
well.

Figure 7: Confidence intervals for the pitch
variance over 100 records. The horizontal line
represents the true variance.

The passing rate should be contrasted with
the following two alternatives. When using
the confidence intervals where the variance
(32) includes only the first term (that is, one
does not account for long memory), the pass-
ing rate is 0.86. Furthermore, when using
the same approach but estimating the ACVF
RX(h) directly from X = Y 2 (cf. Figure 6),
the passing rate drops to 0.72.
Finally, we comment on the choice of the

two parameters T0 and m entering into cal-
culating the confidence intervals (35), with
m through the estimator Ĉ2 in (38). In the
results above, we took T0 = 200 seconds. This
choice should be driven by the range of lags
where the ACVF is believed to be estimated
well. Our results though were not very sen-
sitive to taking a larger value of T0. For the
choice of m, we examined Ĉ2(m) as a func-
tion of m for several records. As presented in
Figure 8 for 5 records, they share a similar pat-
tern, where looking from the right to the left,
the values slowly increase before stabilizing
and having more variability. More variability
is expected since the averages in (38) involve
fewer terms for smaller m. One is interested
in the region where the estimates stabilize be-
cause (37) is an asymptotic relation, so that
the estimation of Ĉ2(m) will naturally have
bias for larger m. In the results above, we
took m = 10.

Figure 8: Estimates Ĉ2(m) versus m for 5
records.
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7 CONCLUSIONS

In this work, we focused on motions whose
ACFs decay very slowly as in Figure 1. We
explained how this behavior arises from non-
zero speed and the underlying spectrum of
the motion at zero speed, making connections
to the phenomenon of (cyclical) long memory.
Finally, we discussed implications of these
findings on constructing confidence intervals
for the variances of motions with slowly de-
caying ACFs.
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A Derivation of spectrum

The goal here is to relate the pseudo-spectrum
SY and the true spectrum S̃Y as∫ ∞

0
cos((w − qw2)h)SY (w)dw
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=
∫ ∞

0
cos(νh)S̃Y (ν)dν, (39)

and to derive the expressions (10)–(11). Given
the form of the encounter spectrum we =
w − qw2 and the assumption q > 0 in (8),
write the left-hand side of (39) as the sum of
three integrals over

( ∫ 1/2q

0
+
∫ 1/q

1/2q
+
∫ ∞

1/q

)
. . . dw =

3∑
j=1

Ij.

The changes of variables ν = w − qw2 for the
first and second integrals, and −ν = w − qw2

for the third integral have unique solutions
w = w(ν) defined below, and allow to express
the integrals as

I1 =
∫ 1/4q

0
cos(νh)SY (w1(ν))dw1

dν
dν, (40)

I2 =
∫ 1/4q

0
cos(νh)SY (w2(ν))(−dw2

dν
)dν, (41)

I3 =
∫ ∞

0
cos(νh)SY (w3(ν))dw3

dν
dν, (42)

where

w1(ν) = 1
2q (1− (1− 4qν)1/2), (43)

w2(ν) = 1
2q (1 + (1− 4qν)1/2), (44)

w3(ν) = 1
2q (1 + (1 + 4qν)1/2). (45)

Differentiating (43)–(45) and gathering all the
terms in (40)–(42) leads to (39) with S̃Y given
by (10)–(11).
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