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ABSTRACT 

Hydrodynamic prediction codes based on potential flow or RANS have matured to a level that they can readily 
be applied to many engineering level analyses, but are still too expensive to directly apply to many extreme 
response problems. One potential solution is to implement a multi-fidelity framework which uses higher 
fidelity models to develop Reduced Order Models (ROMs) of different types and then use those ROMs to 
develop extreme response models and identify conditions leading to extreme response events. This paper 
presents several ideas about the characteristics of effective ROMs and quantifying the uncertainty of ROMs in 
the multi-fidelity approach. 
Keywords: Reduced order model, Uncertainty quantification. 

 
1. INTRODUCTION 

A principal feature of any reduced-order model 
(ROM) is that it represents a reduction or “step back” 
in computational complexity. This may seem 
counterintuitive – since computer modelling was 
first introduced into Naval Architecture practice, 
progress in the prediction of dynamic stability, 
motions, and structural loads has almost universally 
been associated with an increase in the complexity 
of the mathematical models; see a review of Beck 
and Reed (2001) as well as Reed and Beck (2016).  

The development of computational methods for 
the prediction of ship motions and loads in irregular 
waves has been a focus of the Naval Architecture 
community since the publication of St. Denis and 
Pierson (1953). Frequency domain methods in-
cluding diffraction and radiation forces became 
available in the early 1970’s (e.g. Salvesen et al., 
1970). Full consideration of nonlinearity of 
hydrostatic and Froude-Krylov forces leads to a 
transition from the frequency domain to the time 
domain. Computational methods based on potential 
flow hydrodynamics were developed (e.g. de Kat 
and Paulling, 1989; Lin and Yue, 1990). These 
methods have enabled hybrid codes, combining the 
body-nonlinear formulation for hydrostatic and 
Froude-Krylov forces with boundary-value solutions 
for diffraction and radiation either in body-linear or 

nonlinear formulation (e.g. Shin et al., 2003; 
Belknap and Reed, 2019).  

The most complete numerical solution of the 
hydrodynamic body-nonlinear formulation available 
today involves solving the Navier-Stokes equation 
for the flow around the hull, usually with averaging 
of the Reynolds stresses (RANS), with a nonlinear 
free surface boundary condition at the air water 
interface. Advanced RANS codes are capable of 
providing a very high fidelity solution for ship 
motions (e.g. Gorski et al., 2014; Aram and Kim, 
2017). The computational cost of RANS, however, 
makes its application for irregular wave ship motion 
assessment impractical. At the same time, RANS 
provides a practical source of data for building 
models of viscous and vortical forces (e.g. roll 
damping and maneuvering forces) for potential flow 
codes and stand-alone dynamic solvers (e.g. Hughes 
et al., 2019; Aram and Silva, 2019; Aram and 
Wundrow, 2022).  

In the latter case, the RANS calculations are used 
in lieu of a model test. Generally, this is nothing new: 
experimental data have long been used to present 
forces that were not directly available through 
computation. Now these forces are being pre-
computed. Essentially, two models of different 
fidelity (potential flow codes and RANS) are being 
used together in a “hybrid” manner.   
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Extreme ship response, defined as the largest 
motions, accelerations, or loads that might be en-
countered in a particular set of conditions, are of 
special interest for both designers and operators. 
With the development of time domain solvers, direct 
Monte-Carlo approaches seem to be the most evident 
way to obtain information on extreme response. 
However, the computational cost of direct Monte-
Carlo approaches is still too high even for the case 
of hybrid flow solvers. For example, the Large 
Amplitude Motion Program (LAMP – Shin et al., 
2003) runs on the order of real time, so a reliable 
quantification of an extreme response may require 
thousands of hours of simulation data and, therefore, 
thousands of hours of computational time. Thus, in 
order to get to extremes, one must either use 
statistical extrapolation or further simplify the 
mathematical model to improve computational 
speed. The latter option seems to be unreasonable, 
because the extreme event is likely to be when an 
accurate evaluation is most needed. 

Can ROMs be used as a predictor of extreme 
events? Reed (2021) demonstrated that they can, 
when used in conjunction with higher fidelity tools: 
a volume-based method was run to identify wave 
records where extreme events are likely. LAMP was 
then used to compute the actual response. In some 
sense, such a “ROM-as-predictor” method is akin to 
the wave group approach by Themelis and Spyrou 
(2007) and sequential sampling by Mohammad and 
Sapsis (2018).  

In general, the multi-fidelity approach can be 
seen as a systematic framework of using models of 
different fidelity to their best efficiency; see 
Figure 1. 

 
Figure 1: Framework of multi-fidelity extreme 

characterization 

The framework shown in Figure 1 is already in 
use, as regression is used to extract data from RANS 
for roll damping (e.g. Aram and Park, 2022) and for 
maneuvering derivatives (e.g. Aram and Silva, 
2019). LAMP was used in Pipiras et al. (2022) to 
regress diffraction and radiation, while the volume-
based SimpleCode is employed to characterize 
extremes (Reed, 2021)  

To be practical, the multi-fidelity framework 
requires consistency between the models of different 
fidelity – the models much solve the same problem 
and produce results that are complementary from 
level to level. At the same time, different sets of 
assumptions in models of different fidelities leave 
very little chance for exactly the same result. Each 
level of simplification brings modeling uncertainty. 
While the consistency of the models can be generally 
established through validation exercises, the 
consistency of specific assessments can be fully 
defined only if the uncertainty of ROMs has been 
quantified.  

2. REVIEW OF ROMS 
This section reviews the general ideas behind the 

development of “successful” ROMs to determine if 
any general principles can be distilled. “Successful” 
ROMs are understood to be the models or methods 
in which simplifications lead to new functionality or 
new knowledge. As the objective is to understand the 
underlying principle, the review goes slightly 
outside of the stability field to also cover seakeeping, 
maneuvering, and wave loads.  

Two types of ROMs can be identified in the 
literature: semi-analytical and numerical. The 
distinction is somewhat academic, as the final result 
is produced by numerical method anyway.  

Semi-Analytical ROMs 
Semi-analytic ROMs are highly reduced models 

which are simple enough to allow an analytic or 
nearly analytic solution, which can provide a direct 
evaluation of the probability of an extreme event or 
the distribution of extreme responses.  While 
generally too simple to provide a quantitatively 
accurate result, such ROMs can be essential tools in 
the development procedures and tools for use with 
higher fidelity tools. 

An example of this is the development of the 
split-time method for the probability of capsizing in 
irregular waves (Weems et al., 2022). Estimating the 
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probability of capsizing is a very difficult problem 
from the numerical point of view: it combines an 
extreme rarity of event and a very large degree of 
nonlinearity. The essential idea of the split-time 
method, which involves splitting the problem into 
non-rare and rare parts, was derived from a ROM 
with a piecewise linear approximation of the roll 
restoring (GZ) curve (Belenky, 1993). While simple, 
the ROM with piecewise linear GZ curve is capable 
of modelling the key feature of the problem, which 
is two stable equilibria and the transition between 
them; see Figure 2 (Belenky et al., 2016). Weems et 
al. (2022) shows that the split-time method was 
successful for a limited statistical validation (Smith, 
2019). 

The piecewise linear ROM also helped to 
determine the tail structure of distribution of large 
roll angles (Belenky et al., 2019). Knowledge that 
large roll angles (i.e. in vicinity of maximum of the 
GZ curve) are likely to have a distribution with a 
heavy tail allows the construction of a physics-
informed scheme for extrapolation using envelope 
peak over threshold (EPOT), which has shown 
reasonable results in stern-quartering and following 
seas (Campbell et al., 2022). A general principle 
used in piecewise linear ROM is schematization – 
constructing the simplest possible model that 
reproduces the essential physics of roll motion and 
capsizing, which in this case is the existence of two 
stable equilibria. 

 

Figure 2: Phase plane topology of capsize and piecewise 
linear stiffness (Belenky et al., 2016) 

The existence of the equilibria defines the 
topology of the phase plane, and is “responsible” for 
the most basics physics of the phenomenon. That is 

why a single degree of freedom dynamical system 
describing surging and surf-riding was sufficient for 
Spyrou (1996) to relate the surf-riding phenomenon 
to homoclinic bifurcation (see also Spyrou, 2017).  

A focus on the topology of the phase plane 
allowed Maki (2017) to obtain the shape of roll 
motion distribution. He showed that while it is 
critical that the ROM include the principle non-
linearity associated with restoring, the bandwidth of 
the excitation was not that important for the 
distribution shape, including its tails. In fact, the 
presentation of the excitation as white noise can be 
considered as a schematization of excitation. 

In Sapsis et al. (2020), simultaneous hydrostatic 
and excitation schematizations were applied to 
develop a ROM for the hydrostatic and incident 
wave (Froude-Krylov) heave force and pitch 
moment in longitudinal waves. The idea is to 
represent the station lines by a second-order Taylor 
series and approximate irregular seas with a two-
component wave with the same frequency and 
white-noise amplitudes. The frequency is set to have 
a wave length equal to the ship length. This ROM 
led to semi-analytical formula for probability density 
function (PDF) for wave-induced vertical bending 
moment and demonstrated that the asymmetry of 
PDF of VBM is driven by the angle of a station on a 
waterline. Sapsis et al. (2022) and Belenky et al. 
(2022) further extended this ROM to account for the 
effect of deck submergence. 

A classic example of schematization of 
excitation is Grim’s effective wave (Grim, 1961), 
where a longitudinal profile of irregular seas is 
approximated with a single wave with a length equal 
to the ship length and with random amplitude. The 
amplitude is set to achieve an equivalent variation of 
stability. Umeda and Yamakoshi (1986, 1994) have 
demonstrated the accuracy of Grim’s effective wave, 
and proposed the inclusion of a surging effect into 
the calculations in order to account for the timing of 
the exposure to reduced stability conditions. Further 
improvements to Grim’s effective wave are 
described in Bulian (2008). 

Schematization of excitation is not limited to 
waves. Sapsis et al. (2021) uses a delta-function to 
model a slamming impact. Coupled with a Gaussian 
assumption of heave and pitch motion to determine 
slamming events and an elastic beam model of the 
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ship structural response, a PDF of the impact-
induced VBM can be obtained. 

Schematization of excitation becomes especially 
effective when waves irregularity becomes essential 
and even changes the physics of the phenomenon. 
Parametric roll resonance is exactly such a 
phenomenon. The simplest model of parametric 
resonance is the Mathieu equation, which is a linear 
ordinary differential equation with a periodic 
coefficient describing the parametric excitation. 
When the frequency of the parametric excitation 
corresponds to an “instability” interval, the solution 
has no limit. In order to observe a finite steady state 
amplitude, a restoring nonlinearity must be present – 
detuning takes the system out of instability 
conditions. 

The situation is quite different in irregular 
waves. The detuning can be modeled simply by 
wave randomness. That is the main idea of the 
intermittent instabilities approach developed by 
Mohamad and Sapsis (2016). The result recovered 
the characteristic shape of the PDF of parametric 
roll, which has been observed by Hashimoto et al. 
(2011) in a model test and by Belenky et al. (2011) 
in numerical simulations. 

Another case of a substantial change of physics 
introduced by irregular waves is exhibited by surf-
riding. Surf-riding is essentially a dynamic 
equilibrium created by the balance between thrust, 
resistance at wave celerity, and the Froude-Krylov 
surging force. Modeling the surging Froude-Krylov 
force in irregular waves (e.g. Belenky et al., 2019a) 
and the celerity of irregular waves (Spyrou et al., 
2019) is not trivial – several options have been 
considered in the cited references including tracking 
maximum wave slope and definition through 
instantaneous frequency. The most important feature 
of surf-riding in irregular waves is that the point 
where the sum of the surging forces equals zero is no 
longer an equilibrium. Due to the stochastic 
character for Froude-Krylov forces and wave 
celerity, this point appears, disappears, and changes 
location in the phase plane, i.e. moves with 
acceleration. Thus the frame of references fixed to 
this point is no longer inertial. Consideration of bi-
chromatic waves reveals very complex dynamics 
(Spyrou et al., 2016). 

Numerical ROMs 
Weems and Wundrow (2013) and Weems and 

Belenky (2018) describe a volume-based approach 
to efficiently model nonlinear hydrostatic and 
Froude-Krylov forces in the time domain. This 
body-nonlinear formulation led to a very fast ship 
motion code commonly referred to as SimpleCode. 
It can serve as an example of a numerical ROM. 
Diffraction and radiation forces are approximated 
with polynomials, with coefficients determined by 
regressing LAMP-generated data (Pipiras et al., 
2022). Vortical forces are approximated by 
regressing RANS data (Silva and Aram, 2018; Aram 
and Silva, 2019; Weems et al., 2020). Levine et al. 
(2022) and Howard et al. (2022) have demonstrated 
that a neural network can be efficiently used to post-
correct the SimpleCode results, bringing it closer to 
an engineering-level potential flow code, in this case 
LAMP.  

The volume-based body-nonlinear formulation 
is the only substantial difference between the 
SimpleCode and ordinary differential equation 
(ODE) models of ship motions. The ODE approach 
uses linear ship motion equations where nonlinear 
calm-water restoring is artificially introduced (e.g. 
Belenky and Sevastianov, 2007). As a result, 
hydrostatic and Froude-Krylov are artificially 
separated in the pure ODE models and it becomes 
difficult to model stability variation in irregular 
waves – Grim’s effective wave becomes the only 
realistic option. The volume-based approach allows 
the stability variation in irregular waves to be 
modeled without any additional assumptions. 

Weems and Wundrow (2013) estimated the 
computational speed of the SimpleCode as 10 full-
scale hours for 7 seconds on a single CPU core. 
There was no specific benchmarking of the 
SimpleCode against ODE-based simulation, but any 
gain in computational speed for the ODE model is 
most probably not worth the simplification in 
hydrostatic and Froude-Krylov forces, which are 
believed to be the most important nonlinearity in 
ship dynamics in waves. 

The volume-based approach in the SimpleCode 
is essentially a transition from pressure to volume 
integration; the pressure decay in wave (Smith 
effect) is lost during such transition. One can 
characterize this transition as some sort of 
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schematization of hydrostatic and Froude-Krylov 
forces.  

Regression of other hydrodynamic forces also 
can be seen as schematization. Spyrou et al. (2009) 
mentions the body-nonlinear formulation for 
hydrostatic and Froude-Krylov forces based on 
pressure integration, while all other hydrodynamic 
forces are approximated with polynomials. This 
formulation was implemented in LAMP as LAMP-0. 
In terms of computational speed, LAMP-0 holds an 
intermediate position between the SimpleCode and 
the full version of LAMP where diffraction and 
radiation forces are found through the potential flow 
solution of the boundary-value problem.  

Neither LAMP-0 nor SimpleCode model 
hydrodynamic memory. Spyrou et al. (2009) 
describe applying LAMP-0 in a 6 degree of freedom 
formulation with the continuation method in order to 
study surf-riding in stern quartering regular waves. 
Spyrou and Tigkas (2011) and Tigkas and Spyrou 
(2011) further extended continuation to include 
hydrodynamic memory effects. This can be done by 
introducing 40 additional degrees of freedom, i.e. by 
increasing the dimensionality of the problem. This 
demonstrates how the development of a simpler, no-
memory ROM can be considered to be a reduction 
in the dimensionality of the problem. 

Following this principle, the critical wave group 
approach (Themelis and Spyrou, 2007) can be seen 
as a numerical ROM developed by decreasing the 
dimensionality of a stochastic process in irregular 
waves. The latter is fully characterized by a joint 
distribution of all time sections, while a wave group 
can be defined by a limited number of random 
parameters such as number of waves, height and 
period of the largest wave in a group, etc. The 
probabilistic relationship of waves within a group is 
modeled with the Markov process, which can also be 
seen as a reduction of dimensionality (e.g. 
Anastopoulos and Spyrou, 2019). 

Application of an auto regression / moving 
average (ARMA) method to model the wave field 
can also be seen as a reduction of dimensionality. 
Memory in space and time may be limited to 7 to 9 
instances; see e.g. Weems et al. (2016) and 
Degtyarev et al. (2019). 

Reducing dimensionality in the form of a wave 
group presentation allows Cousin and Sapsis (2016) 
to find a ROM-precursor of rogue waves by 

considering the interaction between modulation 
instability properties of localized wave groups and 
the statistical properties of the wave groups. 
Farazmand and Sapsis (2017) extended this 
approach to short-crested seas. 

Directly reducing dimensionality through non-
parametric Gaussian Process Regression (GPR) was 
used by Wan et al. (2018) to develop a data-assisted 
ROM approach for extreme events in a complex 
dynamical system. Dimensionality is reduced by a 
projection of the high-dimensional parameter space 
into low-dimensional parameter space; a review is 
also available from Sapsis (2018).  

Similar principles are behind sequential 
sampling, developed by Mohamad and Sapsis 
(2018), where GPR is used to find a sequence of 
waves that is likely to invoke an extreme event. Silva 
and Maki (2022) use a neural network, trained with 
LAMP results, as a surrogate for ship dynamic 
response to determine critical wave groups. 

General Prinicples of ROMs 
The review of ROMs in the previous two 

subsections is far from complete. Nevertheless, it 
helps to distill several ideas that have led to 
successful ROMs: 
• Schematization of forces, thereby preserving 

topology of phase plane, hydrostatic, and 
Froude-Krylov forces, in the most cases 

• Schematization of excitation, especially when 
irregular waves substantially change the 
phenomenon 

• Reducing dimensionality of the space of 
parameters. 
Some of the reviewed ROMs can be envisioned 

as part of a workflow for assessing extreme events, 
shown in Figure 3. 

3. APPROACH TO QUANTIFICATION OF 
MODELING UNCERTAINTY 
The efficiency and effectiveness of the multi-

fidelity framework, shown in Figure 1, comes at a 
price. This price is a requirement for a certain level 
of consistency and accuracy in the different levels of 
modeling. In the extreme event assessment 
framework, it means that the largest response 
conditions predicted by the lower fidelity model 
remain the largest response conditions when 
predicted by the higher fidelity model. 
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Figure 3: Envisioned Design Application of ROMs for Extreme Events, within a Multi-Fidelity Framework 

 
A simple example of Reed (2021) has shown that 

these extractions were not necessarily correct – the 
very largest ROM event did not produced the very 
largest higher fidelity event. However, it did seem 
that the high-fidelity model would find an extreme 
event if it is given a set of conditions where ROM 
shows its largest responses. In order to reliably use 
ROMs in such an extreme characterization, and to 
identify situations in which ROMs cannot be used, it 
may be necessary to quantify the uncertainty of the 
ROM for the prediction. 

Uncertainty quantification is a part of the 
extrapolation procedure using the split-time and 
EPOT methods; see e.g. Weems et al. (2022) and 
Campbell et al. (2022). The uncertainty addressed by 
the cited references is of a statistical nature, i.e. 
caused by the finite volume of data used for these 
estimates 

In the example of Reed (2021), high-fidelity and 
ROM models were run on the same wave records, so 
differences in the observed outcome should come 
from differences in assumptions, i.e. should be 
associated with modeling uncertainty. 

Uncertainty Quantification with Regression 
Regression is presented in Figure 1 as a way to 

fit the ROMs with high-fidelity data. Regression 
methods come with uncertainty quantification 
techniques; see e.g. Faraway (2005). Aram and Park 

(2022) describe the formal application of linear 
regression and uncertainty quantification to roll 
decay data. A few key elements of that work are 
discussed here.  

A linear regression equation presents high-
fidelity data, referred to as a response vector �⃗�𝑦, with 
the following equation: 
 �⃗�𝑦 = 𝐗𝐗 ∙ 𝑐𝑐 + 𝜀𝜀 (1) 
Where 𝑐𝑐 is a vector of parameters, 𝐗𝐗 is a matrix of 
predictors, and 𝜀𝜀 is a vector of residuals. The 
approximation with the regression model, which is 
the ROM, is expressed as: 

 �⃗�𝑦� = 𝐗𝐗 ∙ 𝑐𝑐 (2) 

where 𝑐𝑐 is the estimate of 𝑐𝑐. 
The central assumption of regression modeling 

is that the difference between the ROM and high 
fidelity data is caused by random reasons; thus 𝜀𝜀 is a 
random vector with zero mean normal distribution. 
Normality naturally comes from the Central Limit 
Theorem, as it is assumed that random reasons are 
many and their contributions are approximately 
equal. 

The vector of parameters 𝑐𝑐 is estmated from the 
condition of the minimum of the sum of the squares 
of residuals. In the case of linear regression, this 
leads to an analyical expression: 

 𝜀𝜀𝜀𝜀𝑇𝑇 → min ⇒𝑐𝑐 = (𝐗𝐗𝑇𝑇𝐗𝐗)−1𝐗𝐗𝑇𝑇�⃗�𝑦  (3) 
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where symbol T stands for transposing a matrix. 
Standard residual error is a measure of the variability 
of the vector of residuals: 

 𝜎𝜎�2 = 1
𝑛𝑛−𝑝𝑝

𝜀𝜀𝜀𝜀𝑇𝑇 (4) 

where n is the number of dependent variables 
(number of rows of the matrx 𝐗𝐗 as well as the length 
of the vectors �⃗�𝑦, 𝑐𝑐, and 𝜀𝜀), and p is the number of 
predictors (i.e. number of columns of the matrix 𝐗𝐗). 

The minimum sum of squares calculation is 
essentially an averaging procedure, so as residuals 
are normal, the parameters follow a Student’s t 
distribution with n-p degrees of freedom. The 
boundaries of the confidence interval for the ith 
parameter are expressed as: 

 �̂�𝑐𝑖𝑖
𝑢𝑢𝑝𝑝,𝑙𝑙𝑙𝑙𝑙𝑙 = �̂�𝑐𝑖𝑖 ± 𝑡𝑡𝛼𝛼 2,⁄ 𝑛𝑛−𝑝𝑝𝜎𝜎��(𝐗𝐗𝑇𝑇𝐗𝐗)𝑖𝑖𝑖𝑖−1 (5) 

where 𝑡𝑡𝛼𝛼 2,⁄ 𝑛𝑛−𝑝𝑝 is the quantile to the confidence 
probability corresponding to α and 𝜎𝜎�2(𝐗𝐗𝑇𝑇𝐗𝐗)𝑖𝑖𝑖𝑖−1 is a 
variance of the estimate of the ith parameter.  

If the ROM estimate 𝑦𝑦�0 is considered without a 
residual error, i.e.: 

 𝑦𝑦�0 = �⃗�𝑥0 ∙ 𝑐𝑐 (6) 
where �⃗�𝑥0 is a particular instance of the vector of 
predictors, its confidence interval can be constructed 
by treating (6) as a deterministic vector-valued 
function of random argument 𝑐𝑐:  

 𝑦𝑦�0
𝑢𝑢𝑝𝑝,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑦𝑦�0 ± 𝑡𝑡𝛼𝛼 2⁄ ,𝑛𝑛−𝑝𝑝𝜎𝜎���⃗�𝑥0𝑇𝑇(𝐗𝐗T𝐗𝐗)−1�⃗�𝑥0 (7) 

where 𝜎𝜎�2�⃗�𝑥0𝑇𝑇�𝐗𝐗T𝐗𝐗�
−1�⃗�𝑥0 is the variance of the 

estimate (6). The confidence interval (7) describes 
the uncertainty of the ROM estimate if it is 
interpreted as a mean estimate; see e.g. Faraway 
(2005). 

If a residual error is expected, then the ROM 
estimate is:  

 𝑦𝑦�0 = �⃗�𝑥0 ∙ 𝑐𝑐 + 𝜀𝜀0 (8) 
where ε0 is an unknown residual error that is 
assumed to be independent of  𝑐𝑐. Then the variance 
of the estimate is 𝜎𝜎�2 �1 + �⃗�𝑥0𝑇𝑇�𝐗𝐗T𝐗𝐗�

−1�⃗�𝑥0� and the 
confidence interval is expressed as follows: 

𝑦𝑦�0
𝑢𝑢𝑝𝑝,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑦𝑦�0 ± 𝑡𝑡𝛼𝛼 2,⁄ 𝑛𝑛−𝑝𝑝𝜎𝜎��1 + �⃗�𝑥0𝑇𝑇(𝐗𝐗T𝐗𝐗)−1�⃗�𝑥0 (9) 

Estimate (8) is sometimes referred to as a “future 
value prediction,” and (9) is considered as a 
prediction interval. Examples of the calculation of 

the intervals (7) and (9) for the roll decay data, 
generated with RANS for ONR Topside Series 
tumblehome configuration, are presented in Aram 
and Park (2022). 

Another example from Aram and Park (2022) is 
an application of a nonlinear regression, in which a 
decaying cosine function was fitted to the roll decay 
data. The nonlinear regression is essentially an 
optimization problem solved numerically: 

 𝑏𝑏�⃗� = argmin(𝜀𝜀𝜀𝜀𝑇𝑇)  (10) 

where 𝑏𝑏�⃗� is a vector parameters of the nonlinear 
ROM. Nonlinear regression comes with its own 
uncertainity quantification techniques. 

Modeling Uncertainty  
The ONR Topsides Series tumblehome 

configuration considered by Aram and Park (2022) 
is known for its strong geometric nonlinearity, 
manifested in the vertical deviation of the backbone 
curve at small roll angles; see Figure 7 of Aram and 
Park (2022). The quadratic fit for the logarithmic 
decrement, which results in a quadratic plus cubic 
model for damping in the time domain, does not 
really fit the data. The more flexible decaying cosine 
curve shows the smallest uncertainty when the large 
and small roll amplitudes are processed separately. 
However the “quadratic-plus-cubic” model may be 
preferable for practical reasons.  

In general, this example is meant to illustrate a 
situation in which a model that should be used in the 
simulations is not necessarily a “good” model from 
a data perspective. This type of model can be 
referred to as a “useful” model.  

If we assume there is a way to fit a “good” model 
and evaluate its uncertainty, then it would be logical 
to consider the uncertainty of a “good” model as 
statistical uncertainty caused by random reasons – 
essentially by the finite volume of data. The 
difference between the “good” model and the 
“useful” model may be then associated with 
modeling uncertainty. 

In order to avoid the difficulty of finding a 
“good” model, a non-parametric regression can be 
used. In particular, Gaussian Process Regression 
(GPR) appears to be a good candidate (e.g. 
Rasmussen and Williams, 2006). 

The idea of GPR is quite intuitive. The data are 
assumed to be sampled from a non-stationary 
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stochastic process following Gaussian distribution. 
The model itself is a mean value function of this 
process. In order to characterize uncertainty, it is 
necessary to determine the autocovariance function, 
after which the Gaussian distribution is completely 
defined for each 𝑥𝑥0. 

For the single-value GPR, the mean value 
function is expressed as: 

 𝜇𝜇(𝑥𝑥0) = 𝐾𝐾��⃗ (𝑥𝑥0)(𝐊𝐊 + 𝜎𝜎𝑛𝑛2𝐈𝐈)−1�⃗�𝑦 (11) 
where x0 is a value where the prediction is computed, 
�⃗�𝑦 is a vector of responces consisted from n elements 
(logarithmic decrement values in the example of 
Aram and Park, 2022), I is an n x n identity matrix, 
K is the n x n covariance matrix, and the vector-
valued function 𝐾𝐾��⃗ (𝑥𝑥0) is defined as: 

 𝐾𝐾��⃗ (𝑥𝑥0) = �
𝑘𝑘(𝑥𝑥0,𝑥𝑥1)

…
𝑘𝑘(𝑥𝑥0,𝑥𝑥𝑛𝑛)

� (12) 

where �⃗�𝑥 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝑇𝑇 is a vector of predictors (roll 
amplitudes in the example of Aram and Park, 2022) 
and 𝑘𝑘(𝑥𝑥0, �⃗�𝑥) is a kernel function defined as: 

 𝑘𝑘(𝑥𝑥0, 𝑥𝑥𝑖𝑖) = σℎ2 ∙ exp �− (𝑥𝑥0−𝑥𝑥𝑖𝑖)2

𝐿𝐿
� (13) 

σh and L are hyper parameters that are normally 
found through an optimization procedure. The 
covariance matrix 𝐊𝐊 is computed with the kernel 
function as: 

 𝐊𝐊 = �
𝑘𝑘(𝑥𝑥1, 𝑥𝑥1) ⋯ 𝑘𝑘(𝑥𝑥1,𝑥𝑥𝑛𝑛)

⋮ ⋱ ⋮
𝑘𝑘(𝑥𝑥𝑛𝑛, 𝑥𝑥1) ⋯ 𝑘𝑘(𝑥𝑥𝑛𝑛,𝑥𝑥𝑛𝑛)

� (14) 

Finally, σn is a standard deviation of noise that is 
found through an optimization procedure along with 
the hyper parameters.  

Figure 4 shows a comparison of GPR vs. linear 
regression computed for the RANS data from Aram 
and Park (2022).  

 
Figure 4: Comparison of GPR and Linear regression for 

RANS roll decay data, from Aram and Park (2022)  

The linear regression was used to fit a quadratic 
parabola: 

 𝐹𝐹(𝜑𝜑) = 𝑐𝑐0 + 𝑐𝑐1𝜑𝜑 + 𝑐𝑐2𝜑𝜑2 (15) 
Parameters of linear regression and GPR are 

shown in Table 1. In this example, the GPR 
parameters were set manually without applying an 
optimization procedure. 

 
Table 1: Regression parameters for RANS roll decay data, 

from Aram and Park (2022)  

Parameter Value Parameter Value 
c0 2.782‧10-3 σh 1.0 
c1 0.018 L 1.0 
c2 -9.214‧10-4 σn 0.1 

 
Uncertainty of the GPR is quantified through the 

generation of instances of a non-stationary Gaussian 
process with mean value function (11) and the 
following covariance function: 

 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥0) = 𝑘𝑘(𝑥𝑥0, �⃗�𝑥) 

 −𝐾𝐾��⃗ (𝑥𝑥0)(𝐊𝐊+ 𝜎𝜎𝑛𝑛2𝐈𝐈)−1 �𝐾𝐾��⃗ (𝑥𝑥0)�
𝑇𝑇

 (16) 

It is not yet clear how exactly to formulate the 
modeling uncertainty based on the observed 
difference between the “good” and the “useful” 
models. It may be necessary to assume that the 
statistical and modeling uncertainty can be treated as 
independent random quantities, likely with Gaussian 
distribution.  

 
Figure 5: On quantification of ROM uncertainty  

The propagation of this uncertainty though a 
dynamical system is based on consideration of the 
dynamical system as a deterministic function of 
random arguments. A likely approach would be to 
collect the results of a large number of ROM 
evaluations spanning the uncertainty bands of key 
parameters and coefficients. The result of this 
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uncertainty propagation could be a distribution of a 
certain characteristic of interest (say, roll angle value 
or turning diameter in waves) that can be compared 
to a high-fidelity result; see Figure 5.  

4. SUMMARY AND CONCLUSIONS 
This paper focused on Reduced Order Models 

(ROMs) for ship hydrodynamics and their role in a 
multi-fidelity modeling framework assessing ship 
responses including extreme events, though the ideas 
are intended to be applicable to the broader 
application of ROMs.  There are two objectives of 
this paper: the first is to review the development of 
relevant ROMs in an attempt to see if there are some 
general principles leading to successes. The second 
objective was to discuss possible uncertainty 
quantification of ROMs. 

The review of the ROMs, while being 
incomplete, allows the formulation of two general 
principles that ROM development seems to follow: 
• Schematization of hydrostatic and Froude-

Krylov forces; schematization of excitation, 
including parametric excitation. 

• Reducing dimensionality of the space of 
random parameters through regression or /and 
active sampling. 

Uncertainty quantification is an important tool 
for confident application of ROMs within the multi-
fidelity modeling framework. It becomes especially 
useful when the results from high-fidelity 
simulations differs from ROMs. Two types of 
uncertainty were considered:  
• Statistical uncertainty caused by random 

reasons such as finite volume of data; 
• Modeling uncertainty caused by necessary 

simplifications of ROM. 

Regression methods come with techniques to 
quantify uncertainty. However the regression 
methods are data-driven and assume that the model 
fits the data. To separate statistical and modeling 
uncertainty, “good” and “useful” type of models are 
introduced. The “good” model fits the data well, 
while the “useful” model is needed for practical 
reasons. Non-parametric regression such as 
Gaussian Process Regression (GPR) may be a useful 
tool for a “good” model. The difference between 

“good” and “useful” model may be helpful to reveal 
and quantify modeling uncertainty. 

At present, a quantitative evaluation of the 
accuracy and effectiveness of ROMs is incomplete, 
though elements are, perhaps, coming into focus. 
The practical application of ROMs within the multi-
fidelity framework is still very much based on 
engineering judgement. It is hoped that the 
development of practical approaches to quantify the 
uncertainty in ROMs will improve the robustness 
and breadth of their applications in the future. 
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