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ABSTRACT 

It is desirable to establish simplified methods for estimating the fundamental parametric rolling in longitudinal 
waves. For the occurrence condition, a method is developed using a harmonic balance method. For the direct 
and simplified estimation of the amplitude, an averaging method is applied to an uncoupled nonlinear roll 
equation. These methods provide reasonable comparisons with the free-running model experiment of a car 
carrier in regular following seas, apart from harmonic rolling due to yaw-roll coupling at higher speed.  
Keywords: harmonic balance method, averaging method, direct stability assessment, vulnerability criteria, pure loss of stability 

 

1. INTRODUCTION 
The International Maritime Organization (IMO) 

approved the second-generation intact stability 
criteria in 2020 (IMO, 2020), consisting of the level 
1 and 2 vulnerability criteria and the direct stability 
assessment. These criteria require us to judge ship 
stability with different criteria depending on the 
stability failure modes. In the case of the direct 
stability assessment, the stability failure found by 
time-domain numerical simulation should be 
verified whether it is the intended failure mode or 
not. (IMO, 2022) 

If the identified failure mode is different from the 
stability failure modes that the vulnerability criteria 
are provided, the results of direct stability 
assessment cannot be utilized for regulatory 
purposes. It is because the use of direct stability 
assessment without the application of vulnerability 
criteria should not be penalized. For avoiding such a 
situation, the vulnerability criteria should be 
developed for the remaining stability failures as soon 
as possible.  

One of the major candidates for the remaining 
failure modes is the fundamental parametric rolling. 
As well established, parametric rolling, in general, 
could occur with the roll frequency being multiple of 
half the encounter wave frequency. However, the 
second generation intact stability criteria deal with 
only principal parametric rolling, in which the roll 
frequency is equal to half the encounter wave 

frequency, among the various parametric rolling 
because the principal parametric rolling is most 
significant. Indeed, most recently reported accidents, 
such as that of the C11 class containership in the 
North Pacific, are due to principal parametric rolling 
at low speed in head or following waves. On the 
other hand, the fundamental parametric rolling, in 
which the roll frequency is equal to the encounter 
wave frequency, could be found at higher speeds in 
following waves when we execute comprehensive 
numerical simulations. (IMO, 2022) 

Therefore, we explore the possibility of 
vulnerability criteria for the fundamental parametric 
rolling, keeping a reasonable relationship with the 
direct stability assessment. Firstly, existing 
experimental data of fundamental parametric rolling 
is identified as a kind of direct stability assessment. 
Secondly, a simplified estimation method for the 
amplitude of fundamental parametric rolling is 
developed based on an averaging method applied to 
an uncoupled roll model. Finally, a simplified 
method for estimating the occurrence of 
fundamental rolling is developed based on a 
harmonic balance method.  

2. MODEL EXPERIMENT 
Sakai et al. (2017) executed model experiments 

of a pure car carrier (PCC) at the seakeeping and 
manoeuvring basin of the National Research 
Institute of Fisheries Engineering. The principal 
particulars of the PCC are shown in Table 1. A free-
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running experiment was carried out in regular 
following waves with a PD autopilot, a propulsion 
motor and a propeller. A fibre optical gyroscope 
measured the roll, pitch and yaw motions, and the 
model trajectory was measured by a total station 
system so that the ship's forward velocity was 
precisely determined. Here the wavelength is equal 
to the ship length between perpendiculars, the wave 
steepness was 0.07, and the autopilot course was set 
to be 10 degrees from the wave direction towards the 
left-hand side. As shown in Figure 1, a typical 
fundamental parametric roll, in which the wave 
encounter period is equal to the roll period and is 
close to the natural roll period, was observed under 
the Froude number of 0.169. During one cycle, the 
centre of roll motion is shifted toward the starboard 
and the largest roll occurs whenever the ship's centre 
meets the wave upslope. The roll restoring moment 
decreases at the wave crest amidship so that the 
larger roll develops at the wave crest amidship than 
at the wave trough amidship. 

 

Table 1: Principal particulars of the PCC 
 Items Ship Model   

Length 
between 

perpendiculars 

Lpp 180 3.366 [m] 

He Breadth B 32.2 0.6022 [m] 
Draught d 8.20 0.1534 [m] 

Metacentric 
height 

GM 1.266 0.02368 [m] 

Natural roll 
period 

Tφ 23.4 3.2 [s] 

Figure 1  An example of the fundamental parametric rolling 
observed in the model experiment with the wave elevation at 
the ship centre. Here the positive wave elevation indicates 
the downward. (Sakai et al., 2017) 

3. MATHEMATICAL MODEL 
An uncoupled roll equation is used as Eq. (1) to 

develop the simplified estimation method. 
�̈�𝜙 + 2𝛼𝛼�̇�𝜙 + 𝛾𝛾�̇�𝜙3 + 𝜔𝜔𝜙𝜙

2(𝜙𝜙 + 𝑙𝑙3𝜙𝜙3 + 𝑙𝑙5𝜙𝜙5) 

+𝜔𝜔𝜙𝜙
2{𝐹𝐹′+ 𝑀𝑀′(𝑘𝑘1 cos𝜔𝜔𝑒𝑒𝑡𝑡 + 𝑘𝑘2 cos 2𝜔𝜔𝑒𝑒𝑡𝑡)} 

 �𝜙𝜙 −
𝜙𝜙3

𝜋𝜋2
� = 0 

(1) 

where 𝜙𝜙 is the roll angle, and the dot indicates the 
differentiation concerning time. 𝛼𝛼  and 𝛾𝛾  are linear 
and cubic roll damping coefficients, respectively. 
𝜔𝜔𝜙𝜙 and 𝜔𝜔𝑒𝑒 are the natural and encounter frequencies, 
respectively. F’ and M’ are the bias and the 
amplitude of GM variation in waves, respectively, as 
given by Eq. (2) 

𝐹𝐹′ = 𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎−𝐺𝐺𝐺𝐺
𝐺𝐺𝐺𝐺

,    𝑀𝑀′ = 𝐺𝐺𝐺𝐺𝑚𝑚𝑎𝑎𝑚𝑚−𝐺𝐺𝐺𝐺𝑎𝑎𝑎𝑎𝑎𝑎
𝐺𝐺𝐺𝐺

 (2) 

𝐺𝐺𝑀𝑀𝑎𝑎𝑎𝑎𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺𝑀𝑀𝑚𝑚𝑎𝑎𝑚𝑚 are the average of GM in 
waves during one cycle and the maximum of GM, 
respectively. Since the GM variation in waves 
consists of the harmonic and subharmonic 
components, as shown in Figure 2. 𝑘𝑘1  and 𝑘𝑘2  are 
coefficients obtained by the Fourier series expansion.  

 
Figure 2  GM variation in waves. 

4. AVERAGING METHOD 
Fundamental parametric rolling has the bias, the 

harmonic and the second harmonic components. 
Thus, we assume the solution of Eq. (1) as Eq. (3) 
for the averaging method. 

 
𝜙𝜙 = 𝐴𝐴0 + 𝐴𝐴1 cos(𝜔𝜔�𝑡𝑡 − 𝜀𝜀1)

+ 𝐴𝐴2 cos(2𝜔𝜔�𝑡𝑡 − 𝜀𝜀2) 
(3) 

 
The assumed solution is substituted into the 

equation of motion. After averaging it for one cycle 
with 𝜔𝜔� = 𝜔𝜔𝑒𝑒 , the simultaneous algebraic equation 
set can be obtained as shown in Appendix 1. Then, 

t(s) 
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the steady amplitudes, phases, and bias can be 
determined by solving it using a numerical iteration 
technique. These outcomes allow us to calculate the 
maximum roll angle during one encounter wave 
cycle as a function of the Froude number. The 
numerical results of this averaging method were 
plotted in Figure 3, together with the time-domain 
simulation results of Eq. (1) using the Runge Kutta 
method. The averaging method provides slightly 
conservative results. The difference between the 
averaging method and the time domain simulation is 
due to the super-harmonics other than the second 
harmonic included in Eq. (3).  

 

Figure 3  Maximum roll angle during one encounter wave 
cycle calculate by the averaging method and the time-
domain simulation of Eq. (1). 
 

Thus, it is possible to straightforwardly estimate 
the amplitude of fundamental parametric rolling so 
that the level 2 parametric rolling can be developed. 
Using the averaging method is advantageous for 
directly identifying the fundamental parametric 
rolling without verifying the failure mode. 

 

5. HARMONIC BALANCE METHOD 
For the harmonic balance method, we assume 

the periodic solution as follows: 
𝜙𝜙 = 𝐴𝐴0 + 𝐴𝐴1 cos𝜔𝜔�𝑡𝑡 + 𝐵𝐵1 sin𝜔𝜔�𝑡𝑡

+ 𝐴𝐴2 cos 2𝜔𝜔�𝑡𝑡 + 𝐵𝐵2 sin 2𝜔𝜔�𝑡𝑡 (4). 

 The assumed solution is substituted into the 
linearized version of Eq. (1). Then we put 𝜔𝜔� =
𝜔𝜔𝑒𝑒 and obtain the requirements for the coefficients 
of the constant terms, cos𝜔𝜔𝑒𝑒𝑡𝑡 , sin𝜔𝜔𝑒𝑒𝑡𝑡 , cos 2𝜔𝜔𝑒𝑒𝑡𝑡 , 
and sin 2𝜔𝜔𝑒𝑒𝑡𝑡 . They can be regarded as a 
simultaneous linear equation set of A0, A1, B1, A2 and 
B2. The condition for the existence of a non-trivial 
solution set can be obtained by calculating its 

determinant. If it has a non-trivial solution set, the 
fundamental parametric rolling shall exist. Thus, the 
fundamental parametric rolling occurrence condition 
can be determined in Appendix 2. This formula 
calculates the range of occurrence of fundamental 
parametric rolling, as shown as a shaded range in 
Figure 4. The estimated range satisfactorily agrees 
with the results of the averaging method. Therefore, 
it can be used to develop the level 1 vulnerability 
criterion. 

 
Figure 4  Range of occurrence of fundamental parametric 
rolling estimated by the harmonic balance method. 
 

6. DISCUSSION 
The above results are compared with the 

aforementioned experimental method, as shown in 
Figure 5. In the range of fundamental parametric 
rolling, the averaging method provides conservative 
estimates for the amplitude. On the other hand, 
significant rolling also exists at higher speeds 
outside the estimated range of fundamental 
parametric rolling.  

Figure 5  Comparison between the model experiment and 
the averaging method. 
 

As shown in Figure 6, the measured roll motion 
at this higher speed region is harmonic, but the phase 
difference is different from the case of Figure 1. The 
maximum roll occurs at the wave crest amidship in 
place of the wave upslope. For investigating the 
reason, we apply the manoeuvring-based surge-
sway-yaw-roll numerical model with the wave effect 
(Kubo et al., 2012) to this series of experiments, as 
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shown in Figures 7 and 8. This numerical model well 
agrees with the model experiment in the higher 
region. Thus, we can conclude that the significant 
role outside the estimated region for fundamental 
parametric rolling is not parametric rolling but yaw-
roll coupling with loss of stability, which the 
methodology should deal with for pure loss of 
stability. 

 

Figure 6  Measured data of roll motion in following waves 
at the Froude number of 0.219. (Sakai et al., 2017) 

Figure 7  Maximum and minimum roll angles estimated by 
the manoeuvring-based simulation and model experiment 
(Sakai et al., 2017). 

Figure 8  Phase difference of maximum roll angle to waves 
estimated by the manoeuvring-based simulation and model 
experiment (Sakai et al., 2017). 
 

7. CONCLUSIONS 
A simplified method for estimating the 

occurrence condition of fundamental parametric 
rolling is developed based on the harmonic balance 
method. A direct method for estimating the 
amplitude of fundamental parametric rolling is 
developed based on the averaging method. These 
outcomes provide reasonable comparisons with the 
model experiment, apart from the harmonic roll at 
higher speed in following waves, which is due to 
yaw-roll coupling with loss of the transverse stability.  
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Appendix 1 
 
The parameters in Eq. (3) can be determined with the following formulae. 
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Appendix 2  
 
The following formula can obtain the occurrence condition for fundamental parametric rolling. 
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(A.6) 

 
where 𝐶𝐶 = 1 + 𝐹𝐹′. 
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