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ABSTRACT  

Ships will experience an assortment of harsh ocean environments throughout their lifetime and 
will be tasked with navigating these circumstances under different operating conditions (e.g. speed, 
heading, maneuver). Traditional extreme event probabilistic models typically focus on a single 
description of the seaway and operating condition to perform analyses. However, large amounts of 
experimental or computational resources are needed to cover the span of all the conditions a vessel 
could encounter. The objective of current work is to extend the CWG-CFD-LSTM framework from 
Silva et al. (2022) to multiple speeds and headings for a free-running vessel. The CWG-CFD-LSTM 
framework combines the critical wave groups method (CWG), computational fluid dynamics (CFD), 
and long short-term memory (LSTM) neural networks to develop computationally efficient surrogate 
models than can predict the six degree of freedom (6-DoF) temporal response of the vessel and 
recover the extreme statistics. Two modelling approaches are considered. A general model approach 
where one model is trained with all the speeds and headings and an ensemble model approach where 
multiple models are trained, each responsible for a single speed and heading combination. The 
extended framework is demonstrated on a case study with simulations from the Large Amplitude 
Motion Program (LAMP) of the David Taylor Model Basin (DTMB) 5415 hull form operating in Sea 
State 7 at different speeds and headings. The developed neural network models with the general 
approach are capable of accurately representing the temporal response of the free-running DTMB 
5415 in extreme waves and also recovering the extreme statistics of roll for different speeds and 
headings. 
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1. INTRODUCTION 

The probabilistic quantification of extreme 
ship response events is a critical consideration 
in the design of new vessels and in the 
development of operational guidance of existing 
vessels. Vessels will not only experience a 
variety of wave environments in their lifetime 
but will also undergo a variety of operations as 
well which will require different speeds, 
headings, and maneuvers. Traditionally, 
extreme event probabilistic methodologies have 
only focused on quantifying the occurrence of 
extreme events for a singular operating and 
wave condition. Though focusing on a single 
operating and wave condition greatly simplifies 

the probabilistic evaluations and is often 
necessary, the quantity of data required to 
evaluate the extremes for multiple conditions 
scales linearly with the quantity of conditions 
and the analysis for one condition is completely 
independent of others.  

Conventional extreme event predicting 
frameworks all suffer from this lack of 
generalization in terms of operating and wave 
conditions. These methods include 
extrapolation-type methods (Campbell and 
Belenky, 2010a,b; Belenky and Campbell, 
2011), perturbation methods like the split-time 
method (Belenky, 1993; Belenky et al. 2010; 
Weems et al. 2020), and wave group methods 
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like the critical wave groups (CWG) method 
(Themelis and Spyrou, 2007; Anastopoulos et 
al., 2016; Anastopoulos and Spyrou, 2016, 2017, 
2019), sequential sampling methods from 
Mohamad and Sapsis (2018), and the Design 
Loads Generator (DLG) (Alford, 2008). 

Additionally, evaluations must be performed 
for nominal operating and environmental 
conditions, that may not be representative of 
real-time wave environments on-board a vessel. 
The computational cost of accurate ship 
hydrodynamics simulation tools also prevents 
any real-time extreme event probabilistic 
evaluations given the instantaneous wave 
environment and ship’s current operating profile 
and any evaluations will have to rely on analyses 
for nominal conditions.  

For both accurate evaluation of extremes for 
large quantities of conditions and possibility of 
real-time extreme event probabilistic 
quantification, hydrodynamic predictions that 
are much faster than real-time are required. 
Accurate hydrodynamic simulation tools are all 
too computational expensive to produce 
predictions that are faster than real-time. 
Therefore, system identification (SI) is 
necessary to produce fast-running surrogate 
models. The present work extends previous 
research by Silva and Maki (2021a,b,c) and 
Silva et al. (2022) combining the CWG method, 
computational fluid dynamics (CFD), and long 
short-term memory (LSTM) neural networks to 
build a CWG-CFD-LSTM extreme event 
framework and an LSTM methodology for 
developing generalized surrogate models for 
free-running vessels that are free to move in all 
six degrees of freedom (6-DoF). 

The objective of the present work is to 
develop a generalized framework capable of 
quantifying the probability of extremes for 
multiple conditions without the need for large 
dataset for each individual condition. Two 
different modelling approaches are considered. 
A general modelling approach where a single 
model is trained for all the conditions will be 
compared against an ensemble model approach 

where multiple neural network models are 
trained, each responsible for a single condition. 
The paper is organized as follows. A summary 
of the CWG method is presented, followed by a 
description of the neural network approach and 
the improved CWG-CFD-LSTM framework. 
Finally, the improved framework will be 
demonstrated on a case study with a free-
running full-scale David Taylor Model Basin 
(DTMB) 5415 hull form operating at multiple 
speeds and headings in Sea State 7 (NATO, 
1983) irregular seas.  

 
2. CRITICAL WAVE GROUPS 

METHOD 

The presented improved framework for 
predicting extreme ship responses events 
employs the CWG method at its core to both 
generate the wave groups and calculate the 
extreme statistics. The present implementation 
of the CWG method comes from work of 
Themelis and Spyrou (2007); Anastopoulos et al. 
(2016); Anastopoulos and Spyrou (2016, 2017, 
2019). The main idea behind the CWG method 
is that the probability of a response 𝜙𝜙 exceeding 
a critical value 𝜙𝜙crit is equal to probability of all 
the wave groups and ship states at the moment 
of encountering the wave group that lead to an 
exceedance. The ship state at the moment of 
encountering the wave group is referred to 
herein as the encounter condition, sometimes 
referred to as the initial condition.  

Wave groups in the CWG methodology are 
constructed with Markov chains and the 
statistical relationship between the heights and 
periods of successive waves. Given the height 
and period of any wave, the Markov chain 
methodology can predict the most likely 
preceding or following wave. Each wave only 
depends on the closest successive wave because 
of the Markov chain’s memoryless property. 
Therefore, a wave group with 𝑗𝑗 waves can be 
fully described given the height 𝐻𝐻𝑐𝑐 and period 
𝑇𝑇𝑐𝑐 of the largest wave in a group, 



 
 

   

Proceedings of the 18th International Ship Stability Workshop, 12-14 September 2022, Gdańsk, Poland 151 

The CWG method identifies all the wave 
group and encounter condition pairs that lead to 
an exceedance. The critical wave groups lead to 
a near-exceedance and any wave groups with 
larger waves of the same form are assumed to 
also lead to an exceedance. Therefore, for each 
encounter condition 𝑒𝑒𝑒𝑒𝑘𝑘  and wave group with 
shape described by 𝑇𝑇𝑐𝑐 and 𝑗𝑗, there is an 𝐻𝐻𝑐𝑐 that 
denotes the critical wave group. This variation 
of 𝐻𝐻𝑐𝑐  to identify a critical wave group is 
illustrated in Figure 1. 

 

 
Figure 1. Identification of a critical wave group 
for a given set of wave groups with similar 
shapes. 

The probability of a response 𝜙𝜙 exceeding a 
critical value 𝜙𝜙crit  is described Equation 1, 
where the calculation is a combination of the 
probability of the 𝑘𝑘𝑡𝑡ℎ  encounter condition 
𝑝𝑝[𝑒𝑒𝑒𝑒𝑘𝑘] and the probability that a wave group 
exceeds the critical wave group 𝑝𝑝 �𝑤𝑤𝑤𝑤𝑚𝑚,𝑗𝑗

(𝑘𝑘) �, for 
the 𝑚𝑚𝑡𝑡ℎ  wave period range, 𝑗𝑗  waves in the 
group and the 𝑘𝑘𝑡𝑡ℎ encounter condition. 

𝑝𝑝[𝜙𝜙 >  𝜙𝜙crit]  = 

��� 1 −  ��1 − 𝑝𝑝 �𝑤𝑤𝑤𝑤𝑚𝑚,𝑗𝑗
(𝑘𝑘) ��

𝑗𝑗

�  ×  𝑝𝑝[𝑒𝑒𝑒𝑒𝑘𝑘]
𝑚𝑚𝑘𝑘

  (1) 

More details of the presented 
implementation of the CWG method wave 
group construction and probability of 
exceedance formulation can be found in 
Anastopoulos and Spyrou (2019) and Silva et al. 
(2022). 

3. NEURAL NETWORK MODEL 

The neural network approach in the current 
work builds of the work of Silva et al. (2022), 
where LSTM neural networks were 
demonstrated to represent effectively the 6-DoF 
response of a vessel within the CWG-CFD-
LSTM frame work for a single speed, heading, 
and seaway description.  

The main idea of the current neural network 
approach that was first developed in Silva and 
Maki (2022), is that the 6-DoF response of a 
vessel depends on the waves that are 
encountered in the instantaneous encounter 
frame. However, the instantaneous encounter 
frame is not known a priori, thus it must be 
estimated. Estimations of the encounter frame 
can be made from the nominal speed and 
heading of the vessel or through the surge, sway, 
and yaw from the traning data. Figure 2 from 
Silva and Maki (2022), shows the surge, sway, 
and yaw time-histories from a set of irregular 
wave realizations. The mean of all the 
realizations provides an estimate of the 
encounter frame and is able to capture any mean 
drift that may be present in a given dataset. 
 

The input into the LSTM neural network is 
the wave elevation time-histories at a series of 
waves probes that move with the estimated 
frame. Given a probe 𝑘𝑘, the wave elevation in 
the estimated encounter frame can be described 
by: 
  
𝜂𝜂𝑘𝑘(𝒙𝒙𝒌𝒌, 𝑡𝑡) =  
 

�𝑎𝑎𝑛𝑛 cos(𝜔𝜔𝑛𝑛𝑡𝑡 −  𝒌𝒌𝑛𝑛)
𝑛𝑛

∙ (𝒙𝒙𝑬𝑬(𝑡𝑡) +  𝑹𝑹𝐸𝐸(𝑡𝑡) ∙ 𝒙𝒙𝒌𝒌) +  𝜙𝜙𝑛𝑛 
(2) 

 
where 𝑎𝑎𝑛𝑛 , 𝜔𝜔𝑛𝑛 , and 𝜙𝜙𝑛𝑛  correspond to the 
amplitude, frequency, and phase of the wave 
Fourier components, 𝒌𝒌𝒏𝒏  is a vector describing 
the wavenumber and direction of each 
component, 𝒙𝒙𝑬𝑬(𝑡𝑡) is the coordinate location of 
the estimated encounter frame with respect to 
time 𝑡𝑡, 𝒙𝒙𝒌𝒌 is the coordinate location of probe 𝑘𝑘 
in the initial earth-fixed frame, and 𝑹𝑹𝐸𝐸(𝑡𝑡) is a 
rotation matrix describing the mean yaw 
trajectory with respect to time. 
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Figure 2. Estimated trajectories for 
coursekeeping from Silva and Maki (2022). 
 

The full input for the neural network 
model during training is for 𝐾𝐾 wave probes, 𝑀𝑀 
training runs, and 𝑇𝑇 steps and is described in the 
form of a 3-D matrix as: 
 

𝑿𝑿 =  �

𝒙𝒙𝟏𝟏𝟏𝟏 𝒙𝒙𝟏𝟏𝟏𝟏
𝒙𝒙𝟏𝟏𝟏𝟏 𝒙𝒙𝟏𝟏𝟏𝟏 …

𝒙𝒙𝟏𝟏𝟏𝟏
𝒙𝒙𝟏𝟏𝟏𝟏

⋮ ⋱ ⋮
𝒙𝒙𝑴𝑴𝟏𝟏 𝒙𝒙𝑴𝑴𝟏𝟏 … 𝒙𝒙𝑴𝑴𝟏𝟏

� (3) 

 
where each component in the input matrix 
𝒙𝒙𝒎𝒎𝒎𝒎 =  �𝑥𝑥𝑚𝑚𝑡𝑡

(1), 𝑥𝑥𝑚𝑚𝑡𝑡
(2), … , 𝑥𝑥𝑚𝑚𝑡𝑡

(𝐾𝐾)� , corresponds to 
the wave elevation at time 𝑡𝑡, for training run 𝑚𝑚 
for wave probe 1 through 𝐾𝐾. The output matrix 
during training is shaped like the input matrix 
and is formulated as: 
 

𝒚𝒚 =  �

𝒚𝒚𝟏𝟏𝟏𝟏 𝒚𝒚𝟏𝟏𝟏𝟏
𝒚𝒚𝟏𝟏𝟏𝟏 𝒚𝒚𝟏𝟏𝟏𝟏 …

𝒚𝒚𝟏𝟏𝟏𝟏
𝒚𝒚𝟏𝟏𝟏𝟏

⋮ ⋱ ⋮
𝒚𝒚𝑴𝑴𝟏𝟏 𝒚𝒚𝑴𝑴𝟏𝟏 … 𝒚𝒚𝑴𝑴𝟏𝟏

� (4) 

 

where each component in the output matrix 
𝒚𝒚𝒎𝒎𝒎𝒎 =  �𝑦𝑦𝑚𝑚𝑡𝑡

(1), 𝑦𝑦𝑚𝑚𝑡𝑡
(2), … , 𝑦𝑦𝑚𝑚𝑡𝑡

(6)� , corresponds to 
the 6-DoF motion values at time 𝑡𝑡  and for 
training run 𝑚𝑚. Previous work in Silva and Maki 
(2022) made the observation that quantities that 
are slowly varying like surge and sway 
displacement do not produce as favorable results 
as DoF such as heave, roll, and pitch. Therefore, 
the present work defines the 6-DoF vessel 
response as the surge velocity, sway velocity, 
heave, roll, pitch, and yaw. With the input and 
output matrices defined in Equation 3 and 4 
respectively, the model is trained to optimize the 
relationship between 𝑿𝑿  and 𝒚𝒚  with a mean-
squared error (MSE) loss function and Adam 
optimizer (Kingma and Ba, 2014).  
 

The neural network architecture in the 
following paper follows the work of Silva and 
Maki (2022) and Silva et al. (2022) with three 
LSTM layers followed by a dense fully 
connected layer. Uncertainty estimates were 
also made in the same manner as Silva and Maki 
(2022) and Silva et al. (2022) with the Monte 
Carlo dropout method from Gal and 
Ghahramani (2016a,b), where dropout layers 
are employed in between each LSTM layer. 
Dropout layers are typically used during training 
to avoid overfitting by randomly and 
temporarily removing a specified percentage of 
the neurons in the layer. The Monte Carlo 
dropout methodology applies the same principle 
during prediction as well and results in 
stochastic predictions which enables estimates 
of the model uncertainty. 
 

The application of the developed neural 
network methodology for multiple speeds and 
headings only differs from a single condition 
method in that each condition has its own 
estimated frame. Therefore, each training run’s 
wave elevation inputs are considered in the 
condition-specific encounter frame. 

 
4. CWG-CFD-LSTM FRAMEWORK 

The implementation of the CWG method 
with CFD (CWG-CFD) was first introduced in 
Silva and Maki (2021a), where a framework was 



 
 

   

Proceedings of the 18th International Ship Stability Workshop, 12-14 September 2022, Gdańsk, Poland 153 

presented that allowed for the CWG method to 
be implemented with high-fidelity CFD 
simulations with unsteady Reynolds-averaged 
Navier-Stokes (URANS) or even model tests. 
The CWG-CFD framework solved the issue of 
enforcing different encounter conditions at the 
moment of wave group impact by introducing 
the natural initial condition concept. The 
natural initial condition utilizes previously 
observed vessel responses from random wave 
trains to identify encounter conditions of interest 
and then blends the deterministic wave groups 
predicted by the Markov chains into the same 
wave trains in a manner that guarantees that the 
encounter condition occurs at the start of the 
wave group. The natural initial condition avoids 
the need for any intrusive techniques of 
enforcing the encounter condition by placing all 
of the focus on the generation of physically 
realizable composite wave trains that contain 
embedded Markov chain wave groups.  

Though the CWG-CFD method solved the 
encounter condition problem, it was still 
computationally expensive because of all the 
computations involved in identifying critical 
wave groups. The CWG-CFD-LSTM 
methodology was introduced in Silva and Maki 
(2021b,c), where the methodology was identical 
to the CWG-CFD framework except that 
surrogate models of the ship dynamical response 
in the time-domain were built with an LSTM 
neural network. The surrogate models then  are 
able to simulate a wider range of the composite 
wave groups and calculate the probabiltiy of 
exceedance according to Equation 1.  

The present work applies the same 
methodology outlined in Silva and Maki 
(2021b,c) and the extension to 6-DoF in Silva et 
al. (2022). However, the current work is focused 
on building more generalized surrogate models 
capable of simulating multiple speeds and 
headings and thus enabling the identification of 
critical wave groups and extreme events for 
different conditions.  
 

5. CASE STUDY 

The presented methodology for modelling 
extreme ship motions for different conditions 
with a general LSTM neural network approach 
within the CWG-CFD-LSTM framework is 
demonstrated with simulations performed with 
the Large Amplitude Motion Program (LAMP) 
(Lin et al. 1994, 2007) for the DTMB 5415 hull 
form in Figure 3. The current work utilizes the 
LAMP-3 formulation, where the 
hydrodynamics (radiation and diffraction) is 
solved about the mean wetted surface (body-
linear), and the hydrostatics and Froude-Krylov 
forces are solved over the instantaneous wetted 
surface (body-nonlinear). The blended 
nonlinear methodology can resolve a significant 
portion of nonlinear effects in most ship-wave 
problems at a fraction of the computational 
effort for the general body-nonlinear 
formulation and allows for large lateral motions 
and simulations of free-running vessels. Though 
under some definitions, LAMP is not considered 
to be a CFD tool like a finite volume URANS 
method, LAMP provides enough fidelity in the 
solution of the ship-wave interaction problem to 
provide sufficient nonlinearity and accuracy to 
test the CWG-CFD-LSTM framework for 
multiple conditions. 

 

 
Figure 3. LAMP representation of the DTMB 
5415 hullform. 
 

Table 1 lists the loading condition and 
fluid properties for the DTMB 5415 case study. 
The loading condition is derived from CFD 
validation studies performed for the 5415M in 
Sadat-Hosseini (2015), while the fluid 
properties represent seawater at 20 °   (ITTC, 
2011). The DTMB 5415 is free to surge, sway, 
heave, roll, pitch and yaw in the LAMP 
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simulations. The vessel’s forward speed is 
controlled with a quasi-steady propeller 
performance model from Lee et al. (2003) and 
the rudders are modelled as low-aspect ratio 
foils that are actuated by a proportional-integral-
derivative (PID) controller to maintain heading. 

Table 1. Loading condition and fluid properties 
for the DTMB 5415 LAMP simulations. 

Properties Units Value 
Length Between Perp. m 142.0 
Beam m 19.06 
Draft m 6.15 
Displacement tonnes 8431.8 
LCG (+Fwd of AP) m 70.317 
VCG (Above BL) m 7.51 
GMT m 1.95 
Roll Gyradius m 7.62 
Pitch Gyradius m 35.50 
Yaw Gyradius m 35.50 
Density of Water kg/m3 1024.81 
Kin. Viscosity of 
Water m2/s 1.0508e-6 

Accel. due to Gravity m/s2 9.80665 
 
Table 2 summarizes the seaway and 

operating conditions considered in the current 
work. A database of wave groups is constructed 
for Sea State 7 long-crested seas described by 
the JONSWAP spectrum. Four operating 
conditions of interest are considered in the 
current work with the different combinations of 
speeds of 10 and 20 knots and headings of 45 
(bow-quartering) and 135 deg (stern-
quartering). As done in previous studies with 
CWG, roll was selected as the quantity of 
interest with roll and roll velocity selected as the 
encounter conditions. Random irregular wave 
simulations were performed for each speed and 
heading combination to identify wave trains to 
act as the natural initial condition for selected 
encounter conditions for the CWG evaluation. 

 
The present paper compares two 

different neural network modelling approaches 
to handle the extreme evaluation of different 
speeds and headings. The general approach 
utilizes simulations from different speeds and 
headings, while the ensemble approach builds a 

separate model for each individual speed and 
heading combination. The training dataset 
contains 1920 total simulation runs (192 hours) 
with 480 training runs (48 hours) per each speed 
and heading combination. The validation dataset 
contains a total of 8000 simulations (800 hours), 
where each speed and heading combination has 
2000 validation runs (200 runs). The details of 
the training and validation matrix, and the neural 
network architecture and hyper-parameters for 
both modelling approaches is summarized in 
Table 3.  

Table 2. Operating and seaway conditions for 
the DTMB 5415 case study 

Properties Units Value 
Speeds knots 10, 20 
Headings deg 45, 135 
Sea State - 7 
Significant Wave  
Height, 𝐻𝐻𝑠𝑠 

m 9.0 

Peak Modal Period, 𝑇𝑇𝑝𝑝 s 15 
Individual Run Length s 360 

Table 3. Training and validation matrix, neural 
network architecture, and hyper-parameters for 
the DTMB 5415 case study. 

Properties Value 

No. Total Training Runs 60, 120, 240, 
480, 960, 1920 

No. Training Runs per 
Condition 

15, 30, 60, 120, 
240, 480 

No. Total Validation Runs 8000 
No. Validation Runs per 
Condition 2000 

No. Time Steps per Run 720 
No. Wave Probes 27 
No. Units per Layer 250 
No. Layers 3 
Dropout 0.1 
Learning Rate 0.00001 
No. Epochs 5000 
Optimizer Adam 

 
As detailed in Table 3, models for both 

modelling approaches are constructed with 
different quantities of training data to 
understand the convergence of the models. Each 
model is evaluated on its respective validation 
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dataset for the ability to predict the temporal 
response of the 6-DoF response of the vessel and 
the ability to produce the same probability of 
exceedance predictions from a pure CWG-CFD 
methodology. 
 

All the constructed models were 
evaluated for their accuracy with respect to 
training data quantity for both 𝐿𝐿2 and 𝐿𝐿∞ error, 
which are described in Equation 5 and 6 
respectively for a single run, where 𝑇𝑇  is the 
number of time steps, 𝑦𝑦 is the LAMP prediction 
and 𝑦𝑦� is the prediction from the neural network. 
The 𝐿𝐿2  error provides an estimate of how the 
overall response time-history compares between 
LAMP and the neural network prediction, while 
the 𝐿𝐿∞  error quantifies the maxim difference 
between LAMP and the neural network 
prediction for each run. 

 

𝐿𝐿2(𝑦𝑦,𝑦𝑦�) =  �
1
𝑇𝑇
�(𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖)2
𝑇𝑇

𝑖𝑖=1

 (5) 

𝐿𝐿∞(𝑦𝑦,𝑦𝑦�) = max
𝑖𝑖=1,…,𝑇𝑇

|𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖| (6) 

 
Figure 4 and Figure 5 are comparisons of 

𝐿𝐿2  and 𝐿𝐿∞  error respectively for both the 
general and ensemble modelling approaches and 
for each DoF. For each validation run, the 𝐿𝐿2 
and 𝐿𝐿∞ error was calculated for each DoF. Each 
marker in Figure 4 and Figure 5 corresponds to 
the median error for all the validations runs for 
a particular DoF at the specified training data 
quantities. The error bars in Figure 4 and Figure 
5 correspond to the 25th and 75th percentiles. For 
both modelling approaches and error quantities, 
the overall median and spread of error decreases 
as the training data quantity increases. Overall, 
the general approach produces lower error than 
the ensemble approach with less training data. 
However, the two approaches trend towards 
each other as the quantity of training data is 
increased. The only exception is the evaluation 
of the pitch predictions, where the ensemble 
approach provides a lower error for all models. 
Overall, both modelling approaches provide 
similar 𝐿𝐿2 and 𝐿𝐿∞ error estimations with larger 
quantities of training data.  

 
Figure 4. Convergence of neural network 
models for 𝐿𝐿2 error. 
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Figure 5. Convergence of neural network 
models for 𝐿𝐿∞ error. 
 

Figure 4 and Figure 5 provided an 
overall assessment of the accuracy of the 
developed models with regards to the 𝐿𝐿2 and 𝐿𝐿∞ 
error of each validation run. Figure 6 and Figure 
7 show time-history comparisons of the 
validation runs for each DoF with the smallest 
and largest 𝐿𝐿∞ error respectively for a general 
model trained with 1920 runs. The black line 
corresponds to the LAMP prediction for the 
validation run, the red dashed line denotes the 
neural network prediction, and the shaded red 
region represents the uncertainty (2𝜎𝜎 ) of the 
neural network from the Monte Carlo dropout 
method. The validation run identification 
number for each DoF is also specified to identify 
if the selected smallest and largest error cases 
are uniform across the different DoF. 

 
Figure 6 demonstrates that for the 

validation runs with the smallest 𝐿𝐿∞ error, the 
time-history comparisons between LAMP and 
the LSTM neural network match well, as is 
expected from the validation run with the 
smallest 𝐿𝐿∞  error. The neural network 
predictions in Figure 7 for the validation runs 
with the largest 𝐿𝐿∞  error displays clear 
deviations between the neural network and 
LAMP predictions. Figure 7 denotes the runs 
where the model performed the worst but for 
each DoF, the predictions match well for the 
first few wave encounters. Each poorly 
predicted validation run has a clear phase shift 
that indicates a large difference between the 
actual and estimated encounter frame in the 
neural network methodology. The yaw DoF 
demonstrates large uncertainty estimates as 
well, indicating that the model is struggling to 
predict the ship response with confidence when 
the ship is deviating too much from the 
estimated encounter frame.  

 
The work of Silva and Maki (2022) 

demonstrated that better predictions of the 
estimated encounter frame help solve this phase 
shift issue. Future work should attempt to 
incorporate a wave-specific estimate of the 
encounter frame with a fast-running low-fidelity 
simulation tool to at least provide a physics-
based estimate due to each individualized wave 
excitation. 
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Figure 6. Smallest 𝐿𝐿∞  error for the general 
model trained with 1920 runs. 
 

 
Figure 7. Largest 𝐿𝐿∞ error for the general model 
trained with 1920 runs. 
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Figure 4 through Figure 7 focused on the 
evaluation of the neural network model for the 
6-DoF response time-histories. Overall, the 
neural network methodology results in a 
computationally efficient surrogate model that 
can predicting the 6-DoF temporal response of a 
vessel for different speeds and headings. 
However, the purpose of the CWG method and 
the broader CWG-CFD-LSTM framework is to 
identify the critical wave groups for each 
encounter condition and wave group with 
shapes described by 𝑇𝑇𝑐𝑐  and 𝑗𝑗 . Therefore, 
identification of the absolute maximum roll for 
each run would indicate the effectiveness of the 
developed surrogate models. 
 

Figure 8 shows LAMP and LSTM 
general model predictions of the absolute 
maximum roll for each individual composite 
wave run for all the speed and heading 
combinations considered in the current work. 
The black solid line in Figure 8 denotes a perfect 
prediction between LAMP and the LSTM 
model, while each marker corresponds to the 
LSTM and LAMP prediction of the absolute 
maximum roll for the same composite wave run.  
 

 
Figure 8. Predictions of absolute maximum roll 
for each composite wave run for all speeds and 
headings. 
 
 

Models with varying quantities of training 
data were compared in Figure 8 and the error 
bars correspond to the uncertainty estimate 
made with the Monte Carlo dropout approach at 
the moment the absolute maximum occurred. As 
the quantity of training is increased, the LSTM 
predictions trend towards the LAMP predictions 
and the perfect correlation line in Figure 8. 
Additionally, the size of the error bars decreases 
indicating a reduction in the uncertainty of the 
models. Overall, the LSTM models are 
calculating the absolute maximum roll with 
accuracy for multiple speeds and headings. 
 
 
6. CONCLUSION 

The CWG-CFD-LSTM framework for free-
running vessels was extended to multiple speeds 
and headings. An ensemble model approach 
where multiple models were trained, each 
responsible for one condition, was compared to 
a general modelling approach where a single 
model was trained for all speeds and headings. 
Overall, the general model approach performed 
better than the ensemble model approach but 
with sufficient training data both approaches are 
comparable. The comparability between 
approaches indicates that the general approach 
could be extended to even more speeds and 
headings without the need for large amounts of 
data at each discrete condition. Therefore, the 
general approach should be explored in further 
work developing generalized condition-agnostic 
frameworks for evaluating extreme events. 

Some areas of focus that would improve the 
presented work are to extend the case study to 
more operating conditions and seaway 
descriptions, identify conditions with more 
severe motions to test the accuracy under even 
more extreme events, and develop better 
approximations of the estimated encounter 
frame that are wave-specific to address the 
issues when the actual frame deviates 
significantly from the estimated frame. 
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