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Abstract: The paper addresses the formulation of a metric for the likelihood of surf-riding in irregular waves. This likelihood is a 
critical element of the split-time method that allows the inclusion of physics in statistical extrapolation. The candidate metric is the 
distance on the phase plane between the current position and the instantaneous boundary of attraction to the stable surf-riding 
equilibrium. The distance is measured along the line connecting the position of the dynamical system and the stable surf-riding 
equilibrium at the initial moment. 
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1. Introduction 

The split-time method∗ [1] is a procedure for 
evaluating the probability of a rare stability failure in 
irregular waves from relatively short samples of time 
domain data. The application of the method requires 
the formulation of a metric for the likelihood of 
stability failure that can be computed at certain, 
non-rare instances in the time domain. For the case of 
capsizing due to pure loss of stability, the metric is the 
difference between the observed and critical roll rate 
at the instant of upcrossing of an intermediate 
threshold. The objective of the present study is to 
formulate such a metric for surf-riding in irregular 
waves. 

The physical mechanism of surf-riding includes the 
appearance of dynamical equilibria and a ship’s 
attraction to the stable equilibrium [2]. The equilibria 
appear when the wave surging force becomes large 

                                                           
∗ Corresponding author: Vadim Belenky, research field: 
dynamic stability, stochastic dynamics of ships. 
E-mail: vadim.belenky@navy.mil 
 
The work described in this paper has been funded by the Office 
of Naval Research (ONR) under Dr. Ki-Han Kim and ONR 
Global under Dr. Woei-Min Lin This support is gratefully 
acknowledged by the authors. 

enough to offset the difference between the ship’s 
thrust and its resistance at wave celerity. The 
equilibrium points are the positions of the ship on the 
waves where the forces balance exactly. The dynamics 
of surf-riding in regular waves is fairly well 
understood [3], but surf-riding in irregular waves is to 
large extent terra incognita. Some advances in the 
understanding of surf-riding in multi-frequency waves 
are described in [4]. One of the most significant issues 
in this area has been the development of an effective 
definition of wave celerity in irregular waves and 
practical procedures for calculating it. Unlike the 
regular wave case where wave celerity is constant, 
celerity in irregular waves will vary in both space and 
time and must be considered as a stochastic process of 
its own. In a similar fashion, the magnitude of the 
maximum wave surging forces in irregular waves will 
be varying in space and time. 

With this time-dependence of both the wave 
celerity and the maximum surging forces in irregular 
waves, a balance of the wave surging, thrust and 
resistance forces may not always be possible, so the 
surf-riding equilibrium may exist for only a limited 
time. Because the time of the existence of equilibrium 
is not usually limited in mechanics, it would be more 
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appropriate to use the term “quasi-equilibrium” in 
relation to surf-riding in irregular waves. 

Indeed, the existence of the quasi-equilibrium is a 
necessary, but not sufficient, condition for surf-riding, 
as actual surf-riding includes ship’s attraction. In the 
case of regular waves, the appearance of the system 
inside the area of attraction to the equilibrium is the 
sufficient condition of surf-riding. The formulation of 
the sufficient conditions for irregular waves is more 
difficult. Even while the quasi-equilibrium exists, 
there is no reason to believe that the area of attraction 
stays the same. It is quite possible also that the 
topology of phase plane may change back and forth 
between “coexistence of surging and surf-riding” and 
“surf-riding only.” To accommodate this, the 
sufficient condition for surf-riding can be formulated 
in terms of the distance, in the phase plane, between 
the instantaneous positions of the quasi-equilibrium 
and the dynamical system. This formulation may be 
further extended with a requirement for the dynamical 
system to spend a certain amount of time in the 
vicinity of the quasi-equilibrium, thus allowing time 
for the ship to reach surf-riding condition. This 
condition is especially important when considering 
broaching-to following surf-riding, as it may take 
some time for the yaw instability (if it exists) to 
develop into broaching-to. 

If the quasi-equilibrium does exist at an arbitrary 
instant of time, there is a neighborhood around the 
quasi-equilibrium that corresponds to surf-riding and 
that will exist while the quasi-equilibrium exists. 
Consider the position of the dynamical system on the 
phase plane at this instant. If this position is located 
within the neighborhood, then surf-riding occurs. The 
distance to the boundary of such a neighborhood can 
therefore be considered as a possible candidate for the 
metric of the likelihood of surf-riding. The distance 
can be measured by the line between the ship’s 
position and the quasi-equilibrium, but must account 
for the time dependence of the equilibrium and the 
neighborhood. 

2. Mathematical Model 

Consider a simple model for one-degree-of-freedom 
nonlinear surging: 

( ) ( ) ( ) ( ) 0,,11 =ξ+ξ−ξ+ξ+ GXGGG tFnTRAM     (1) 

Here M is mass of the ship, A11 is longitudinal 
added mass, R is resistance in calm water, T is the 
thrust in calm water, n is the number of propeller 
revolutions, FX is the Froude-Krylov wave surging 
force, and ξG is longitudinal position of the center of 
gravity in the Earth-fixed coordinate system; the dot 
above the symbol stands for temporal derivative. 
Polynomial presentations are used for the resistance 
and thrust: 
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The coefficients r and τ are meant to be fit to the 
appropriate calm water curves [5]. 

As the model is meant at this stage to be qualitative, 
a linear wave-body formulation is appropriate. 
Therefore, 
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Here AXi is the amplitude of the surging force for 
each component frequency of the incident wave, while 
γi is the phase shift between the wave elevation and 
the force components. Details of the surging force 
calculation can be found in [1]. 

3. Candidate Metric – Distance to the 
Manifold 

First, consider the case of regular waves. The 
boundary for the domain of attraction to a stable 
equilibrium is the unstable invariant manifold. It can 
be computed by integration in inverse time from 
unstable equilibrium, as illustrated in Fig. 1. 
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Fig. 1 – Phase plane for co-existence of surging and 

surf-riding in regular waves 

 

However, the direct calculation of the invariant 
manifold may be not trivial in numerical sense. It 
requires careful management of the step of integration. 
In principle, such an approach can be extended to 
irregular waves [6], but the calculation cost renders 
such an approach impracticable. 

However, it is not necessary to know the entire 
manifold in order to evaluate the distance. To find the 
single point on the manifold that characterizes the 
distance, one may consider a perturbation algorithm, 
similar to [1]. Fig. 2 illustrates such a calculation that 
consists of short simulations. Initial conditions for 
these simulations lie on the line connecting the 
dynamical system’s position and the stable 
equilibrium at an arbitrary instant of time. 

The initial position in Fig. 2 corresponds to surging. 
The variation of the initial conditions along the line 
(between the initial position and the stable 
equilibrium) defines an iterative process that 
converges to the critical point, at which the difference 
between initial conditions leading to surging and 
surf-riding falls below a pre-defined tolerance. These 
calculations converge after 9~12 iterations with the 
relative tolerance at 0.1%, and they take about a 
second on a single processor of a standard laptop 
computer. 

 

 
Fig. 2 – Perturbation algorithm to find a “distance to 

manifold” 

 

5.  Metric in the Time Dependent Dynamical 
System  

The introduction of the irregular waves into the 
dynamical system defined by equation (1) essentially 
makes it time dependent [7]. Prior to the full 
implementation of irregular waves, the concept can be 
tested by considering an artificial time dependence 
consisting of simultaneous changes of wave frequency 
and amplitude, as illustrated in Fig.3. These changes 
alter the balance between thrust and resistance (see 
Fig.4). As a result, the surf-riding equilibria cease to 
exist around t=280 seconds, and surf-riding becomes 
impossible after that time. Fig.5 shows the evolution 
of the surf-riding equilibria caused by these changes to 
the waves.  

The introduction of time dependence into the 
dynamical system changes the situation significantly. 
The surf-riding equilibria move, the domain of 
attraction changes, and the boundaries of the attraction 
move and are no longer invariant. However, the 
calculation result for the metric with perturbations 
looks very similar to the regular wave case, as shown 
in Fig. 6. 
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Fig. 3 – Wave parameters for artificial time-dependence 

 
Fig. 4 – Changes in forces caused by time dependence 

 
Fig. 5 – Evolution of surf-riding equilibria 

 
Fig. 6 – Perturbation algorithm to find a “distance to 

manifold” 

 

However, some changes can be seen. The initial 
positions of the equilibria are no longer in the centers 
of the saddle and focus points. Indeed, the saddle 
point is located where the unstable equilibrium will be 
when the dynamical system will reach that position in 
phase plane. The same statement can be made with 
regard to the position of the stable equilibrium and the 
focus point. 

 

6.  Conclusions and Future Work 

The present study addresses the formulation of a 
metric for the likelihood of surf-riding that could be 
applied to the case of irregular waves. Indeed this 
formulation implies existence of surf-riding equilibria 
at the time instance when the metric is evaluated. 

The candidate metric is a distance between a given 
position of the dynamical system in the phase plane 
and the boundary of attraction to the stable surf-riding 
equilibrium. The metric is measured along the line 
between the position of the dynamical system and 
stable equilibrium at the same instant of time. It has 
been demonstrated that the candidate metric can be 
computed for a model of the dynamical system 
incorporating a time-dependence of the wave 
parameters. 

The next step is to determine if the metric can be 
computed for the dynamical system under stochastic 
excitation and then whether the occurrence of 
surf-riding in a long series of simulations can be 
predicted by extrapolation of this metric from a short 
series of simulations. 
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