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Abstract: In the problem of simulation of marine object behaviour in a seaway determination of pressures exerted on the object is 
often done on assumption of ocean wave amplitudes being small compared to wave height, however, this is not the best approach for 
real ocean waves. This was done due to underlying wind wave models (such as Longuet—Higgins model) lacking ability to produce 
large amplitude waves. The other option is to use alternative autoregressive model which is capable of producing real ocean waves, 
but in this approach pressure calculation scheme should be extended to cover large-amplitude wave case. It is possible to obtain 
analytical solutions for both two- and three-dimensional problem and it was found that corresponding numerical algorithms are 
simple and have efficient implementations compared to small amplitude case where the calculation is done by transforming partial 
differential equations into numerical schemes. In the numerical experiment it was proved that obtained formulae work for waves of 
arbitrary amplitudes whereas existing solutions work in small-amplitude case and diverge in large amplitude case. 
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1. Introduction 

For many years marine object behaviour in a 
seaway was investigated through experiments 
conducted in a towing tank and although in some 
cases this approach proved to be useful now it has 
some disadvantages compared to modern techniques. 
First of all, conducting a single experiment in a 
towing tank and collecting desired data takes as long 
as one month to complete. Second, towing tank 
provides machinery to generate only plane waves 
which propagate in at most one direction and process 
of propagation is disturbed by walls of a pool so that 
real three-dimensional sea waves cannot be generated 
in the experiment. Finally, all the simulations in a 
towing tank are carried out not for real-sized ship but 
for its model and using fitting criteria to generalise 
experimental results for the real ship is not always 
feasible; so not every aspect of real behaviour can be 
captured in a towing tank. As a result of these 
deficiencies and also as a consequence of 
development of high-performance computer machines 

more and more experiments are replaced by 
computer-based simulations conducted in a virtual 
testbed.  

Virtual testbed being a computer program to 
simulate physical and anthropogenic phenomena can 
be seen as an evolution and virtual analogue of a 
towing tank and it not only lacks disadvantages of a 
towing tank mentioned above but also offers much 
broader set of simulation options. For example, in a 
computer program with help of a proper sea wave 
generator it is possible to combine climatic and wind 
wave models [1] and to use assimilated wind velocity 
field data to simulate wind waves and swell which 
occur in a particular region of ocean and also to 
simulate evolution of wave climate between normal 
and storm weather. Another option is to simulate 
water streams, ice cover, wave deflection and wave 
diffraction. However, none of these options were 
implemented in software to a full extent and often 
used wind wave models are capable of generating only 
linear sea. So, virtual testbed approach takes marine 
object behaviour simulations one level higher than 
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level offered by towing tank, however, not all the 
potential of this approach is realised.  

Not only different weather scenarios are not 
implemented in a virtual testbed but wind wave 
models such as Longuet—Higgins model are capable 
of generating only linear sea and more effective 
models can be developed. An alternative 
autoregressive model is a wind wave model proposed 
by Rozhkov, Gurgenidze and Trapeznikov [2] and it is 
advantageous in many ways over Longuet—Higgins 
model when conducting simulations in a virtual 
testbed. First, it allows generating realisations of 
arbitrary amplitude ocean waves whereas Longuet—
Higgins model formulae are derived using 
assumptions of small-amplitude wave theory and are 
not suitable to generate surfaces of large-amplitude 
waves [3]. Second, it lacks disadvantages of 
Longuet—Higgins model: it has high convergence 
rate, its period is limited only by period of 
pseudo-random number generator and it can model 
certain nonlinearities of wave motion such as 
asymmetric distribution of wavy surface elevation [4]. 
Finally, autoregressive model has efficient and fast 
numerical algorithm compared to Longuet—Higgins 
model which reduces simulation time [5]. However, 
autoregressive model formulae are not derived from 
partial differential equations of wave motion but 
instead represent non-physical approach to wavy 
surface generation and to prove adequacy of such an 
approach series of experiments were conducted to 
show that wavy surface generated by this model 
possesses integral characteristics as well as dispersion 
relation of real ocean waves and an ability to 
reproduce storm weather [3]. 

Theory of small amplitude waves is also used to 
determine pressures under sea surface and methods for 
determining pressures should also be modified to 
match autoregressive model. 

2. Determining pressures 

2.1 Two-dimensional case 

The problem of pressure determination under real 
sea surface in case of inviscid incompressible fluid is 
reduced to solving Laplace equation with dynamic and 
kinematic boundary conditions [6] and in 
two-dimensional case an analytical solution can be 
obtained. In two-dimensional case the corresponding 
system of equations  
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can be solved in three steps. The first step is to solve 
Laplace equation using Fourier method and obtain 
solution of the form of Fourier integral 
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The second step is to determine coefficients E(λ) by 
substituting this integral into the second (kinematic) 
boundary condition. The boundary condition is held 
on the free wavy surface z=ς(x, t) so that velocity 
potential derivative φz(x, t) can be evaluated using the 
chain rule.  

After performing these steps the equation  
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which represents Laplace transform formula can be 
obtained and inverted to obtain formula for 
coefficients E(λ): 
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The final step is to substitute formula for 
coefficients into (2) which yields equation 
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Using this equation an explicit formula for pressure 
determination can be obtained directly from the first 
boundary condition: 
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Analytical solution was compared to the solution  
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obtained for small-amplitude waves [7] and numerical 
experiments showed good correspondence rate 
between resulting velocity potential fields. In order to 
obtain velocity potential fields realisations of the 
wavy sea surface were generated by autoregressive 
model differing only in wave amplitude. In numerical 
implementation infinite outer and inner integral limits 
of (3) were replaced by the corresponding wavy 
surface size (x0, x1) and wave number interval (λ0, λ1) 
so that inner integral converges (this interval 
contained only those wave numbers which were 
present in wave energy spectrum of the realisation). 
Experiments were conducted for waves of both small 
and large amplitudes and in case of small-amplitude 
waves both solutions produced similar results, 
whereas in case of large-amplitude waves only general 
solution (3) produced stable velocity field 
(Figure 1−2). Therefore, general solution works for 
different wavy sea surfaces and does not impose 
restrictions on the wave amplitude. 

 

Fig. 1 – Velocity field for small-amplitude case, u1 – general 

solution, u2 – solution for small-amplitude waves. 

 

Fig. 2 – Velocity field for large-amplitude case, u1 – general 

solution, u2 – solution for small-amplitude waves. 

Resulting solution (3) can be used to compute impact 
of hydrodynamic forces on a ship's hull and is 
advantageous in several ways. First, it can be used for 
wavy surfaces of arbitrary amplitudes to support 
simulations for small-sized ships or storm weather in a 
virtual testbed. Second, the formula is analytical and 
explicit so that no numerical scheme is needed to 
implement solution of initial system of partial 
differential equations (1) on a computer; hence, 
resulting algorithm is fast and easily scalable on a 
multiprocessor computer. 

2.2 Three-dimensional case 

The system of equations 
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for three-dimensional case is solved in a way similar 
to the two-dimensional problem, however, it involves 
some additional steps. The first step is to obtain the 
solution of Laplace equation using Fourier method in 
a form of 
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The second step is to substitute this integral into the 
kinematic boundary condition, however, here integral 
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transform can not be readily applied. In order to 
circumvent this wave numbers (λ, γ) can be written in 
polar coordinates (r, θ) and space coordinates 
(x, y, ζ(x, y)) converted to cylindrical coordinates 
(ρ, ψ, ζ(ρ, ψ)): 
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After performing these steps the integral on the right 
hand side can be written as two-dimensional 
convolution and then Fourier transform can be applied 
(see Appendix): 
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The final expression is written as follows. 
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The explicit formula for pressure determination 
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is obtained from the first boundary condition the same 
way it is done for two-dimensional case. 

Compared to the solution for small-amplitude 
waves new solution not only works for arbitrary wave 
amplitudes but also has a number of computational 
advantages of corresponding numerical algorithm. The 
solution for small-amplitude case is written as an 
elliptic partial differential equation 
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which can be solved using multi-grid method [7]. 
Compared to this formula the new solution requires 
only numerical integration and fast Fourier transform 
(FFT) implementations which are well-known, simple, 
and already available in scientific software libraries. 
The other advantage is that these algorithms have 
efficient GPU implementations which allow 
constructing very efficient computational CPU–GPU 
pipeline because autoregressive model shows high 
performance only on CPU [5]. 

3. Conclusions 

Obtained solutions for two- and three-dimensional 
problems can be used to compute hydrodynamic 
pressures exerted on a marine object in a seaway, they 
do not pose restrictions on wave amplitude and are 
analytical thus having efficient implementations on 
hybrid CPU & GPU computer architectures. 

The future work is to implement three-dimensional 
problem solution on GPU and measure performance 
of CPU–GPU computational pipeline. 
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Appendix 

Forming two-dimensional convolution 

Two-dimensional convolution on the right hand side 
of equation 
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can be made by applying the following transform. 
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and two-dimensional convolution can be applied: 
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