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Abstract: The difference between population statistics is proposed as a primary acceptance criteria metric for the direct quantitative 
validation of ship simulation tools in support of accreditation for uses related to ship motions in irregular seas.  The discussion is 
applicable to comparisons of statistical quantities calculated from ship motion time histories generated by simulations and benchmark 
data such as scale-model test results.  The difference between population statistics provides several of the key characteristics desira-
ble in acceptance criteria, including quantifiable measures of accuracy, completeness, and self-consistency.  Further, this metric can 
be applied to a variety of statistical quantities of interest, provides an opportunity to extend parameter-level comparison results to a 
broader measure of overall accuracy, and allows for straightforward application of engineering margins traceable to simulation tool 
performance requirements.  Use of the difference between values (often called the error) as the foundation of comparison metrics is 
not a new concept in the field of validation, but its use is not frequently associated with acceptance criteria for simulations of sto-
chastic processes.  Much work has been completed to characterize the total uncertainties from various sources associated with each 
data set in a comparison of this type.  Extension of that body of work to the uncertainty associated with the comparison itself pro-
vides a robust measure of parameter accuracy and a flexible and adaptable acceptance criteria foundation. 
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1. Introduction* 

Validation and accreditation of simulation tools for 
modeling ship motions in irregular seas is a challeng-
ing endeavor for which no single straightforward me-
thodology has been proven universally applicable.  
Rather, several key comparison approaches are typi-
cally employed through a multifaceted comparison of 
simulation results to benchmark data.   

Belknap, et al. (2011) describes two categories of 
validation techniques: qualitative and quantitative.  
Qualitative validation methods examine trends and 
expected behaviors to provide confidence that the un-
derlying assumptions within the code lead to reasona-
ble, physical results.  Quantitative validation me-
thods establish the simulation tool’s ability to meet 
specific performance requirements associated with the 
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Specific Intended Uses (SIUs) for which accreditation 
is sought.   

Acceptance criteria are typically implemented as 
part of quantitative validation to provide 
non-subjective assessment of desired simulation tool 
performance.  Of course, subjectivity is inherently 
present in the development of acceptance criteria, 
themselves, but ideally the quantitative criteria are 
directly traceable to performance capabilities defined 
by the simulation tool user for each SIU. 

Establishment of appropriate acceptance criteria for 
SIUs related to ship motions in irregular waves is not 
straightforward.  Smith (2012) describes some of the 
complexities of this task, including the development 
of acceptance criteria structure.  Validation methods 
should extend single parameter comparisons to overall 
assessment of the code through examination of mul-
tiple degrees of freedom and conditions.  Smith 
(2012) proposes a three-tier structure of parameter 
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criteria, condition criteria, and set criteria.  Parameter 
criteria are applied to a single degree of freedom and a 
single condition; results from the parameter criteria 
form the inputs to condition criteria, and so forth.   

The challenge of establishing appropriate parameter 
criteria is complicated by uncertainty associated with 
the data values compared.  Statistical values calcu-
lated from ship motion time histories are not known 
exactly.  Uncertainty associated with calculated time 
history statistics comes from several sources including 
stochastic process uncertainty, instrumentation uncer-
tainty (if model results are used as benchmark data), 
and uncertainty in simulation results due to uncertain-
ty in simulation input parameters (input sensitivity).  
Known uncertainties should be quantified and incor-
porated into acceptance criteria for robust comparison 
assessment. 

Characteristics of good acceptance criteria for vali-
dation and accreditation of computer models have 
been identified by previous efforts within and beyond 
the field of ship dynamic stability.  Oberkampf & 
Barone (2006) outline features of good validation me-
trics within their discussion of criteria development.  
Smith (2012) discusses the importance of many of 
these characteristics to the development of acceptance 
criteria for irregular seas ship motion prediction vali-
dation.  Perhaps most significant among these cha-
racteristics is the ability to provide quantifiable meas-
ures accuracy through comparisons.  Also notable are 
the importance of self-consistency (non-contradictory 
assessment outcomes) and completeness (considera-
tion given for all relevant sources of uncertainty asso-
ciated with validation data sets). 

The quantitative acceptance criteria metric pro-
posed in this paper is intended to be applied on a pa-
rameter level for direct validation through comparison 
with benchmark (model-test) data.   

 

2. Definitions 

Ship motion response in irregular seas can be charac-
terized in many ways, the most common of which is 
the standard deviation (or square root of variance) of a 

particular ship motion parameter time history.  The 
discussion below will be presented in the context of 
standard deviation comparisons, but the concepts are 
applicable for other statistical quantities which may be 
applicable to the SIUs (e.g. exceedence rate, percentile 
of peak amplitudes).  Belenky, et al. (2013) provides 
discussion on the calculation of mean ensemble va-
riance values from typical irregular seas model-test 
time histories. 

2.1 Difference Between Data Points 

The foundation of the proposed metric for this appli-
cation is the difference between statistical quantities 
calculated from simulation and model test data sets. 

  (1) 

A positive value is associated with simulation 
over-prediction, and a negative value denotes simula-
tion under-prediction.  This concept is certainly not 
new to the field of validation, but its use is often asso-
ciated with largely deterministic processes.  Both 
Oberkampf & Barone (2006) and ASME (2009) refer 
to this quantity as the error between model and expe-
rimental results, noting that the experimental results 
are only an estimated measure of the “true” parameter 
value. 

 

2.2 Confidence Intervals 

The confidence interval is an conventional mathe-
matical quantity which NIST (2014) defines as a range 
of values which is likely to contain the population 
parameter of interest.  Its purpose is to account for 
the possible difference between a discreet value de-
rived from limited population samples from the un-
derlying population value.  The level of confidence 
associated with the interval defines its length and cor-
responds to the probability that the sampled value and 
intervals encompass the true population value.   
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When defined relative to a mean value and assum-
ing a large sample size, the confidence interval is de-
fined as  

  

where s is the sample standard deviation, N is the 
number of samples, α is the desired significance level 
(corresponds to confidence level), and z is the 
two-tailed Gaussian distribution factor with signific-
ance level, α.  The upper and lower bounds of the 
confidence intervals applied to the sample mean are 
defined as 

  (2) 

where μsample is the sample mean.  Belenky, et al. 
(2013) provides an extension of this theory to calcu-
late the confidence interval on the ensemble mean 
standard deviation value from a set of time histories of 
ship motions for one parameter and one condition.   

When comparing samples from two populations, 
the confidence interval on the difference between 
mean values is of interest.  The confidence interval 
on the difference between mean values is defined as  

  (3) 

where the subscripts 1 and 2 distinguish between data 
sets.   

 

2.3 Combined Uncertainty 

Additional sources of uncertainty may be applicable 
to the sample value, including uncertainty due to in-
strumentation limitations and uncertainty due to va-
riability of the conditions under which the data was 
generated.  Combined uncertainty intervals con-
structed from multiple sources of uncertainty are typ-
ically the root sum of squared intervals calculated 

separately for each source.  While confidence inter-
vals (based only on sampling characteristics) are 
symmetric, combined uncertainty intervals may be 
asymmetric.   

To compare two data sets with equal number of 
samples (i.e. N1 = N2) and symmetric confidence in-
tervals, (3) can be rearranged and described in terms 
of the confidence intervals associated with each data 
set value as 

  

where α* refers to the level of significance associated 
with the sample intervals and α refers to the level of 
significance associated with the uncertainty in the dif-
ference. 

Equation (3) lends itself to a definition of the com-
bined uncertainty (e.g. statistical, instrument, etc.) in 
the difference between samples which is agnostic to 
the methods used to define the combined uncertainty 
intervals associated with each data set, assuming the 
uncertainties of each set are Gaussian distributed.  
Further, (3) can be adapted to account for asymmetric 
intervals by distinguishing between the upper and 
lower intervals associated with each set. 

For validation purposes, consider the definition of 
the difference provided in (1) to compare two ensem-
ble mean standard deviation quantities.  Given com-
bined uncertainty intervals associated with each data 
set of significance level α*, the upper and lower com-
bined uncertainty intervals on the difference can be 
calculated as 

 

and 
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where the subscripts “bench” and “sim” refer to the 
benchmark and simulation data sets, respectively.  
Fig. 1 below illustrates the relationships between the 
uncertainty intervals on both data sets and the uncer-
tainty interval on the difference. 
 
 

 

Fig. 1: Uncertainty Intervals On Two Data Sets and 
On the Difference Between Data Sets 

3. Validation Utility 

Quantitative validation for stochastic processes is of-
ten centered around traditional methods of statistical 
inference.  Hypothesis testing and interval overlap 
examination address the question: “Could the under-
lying populations (described by the sample data sets) 
be the same?”  Smith (2011) presents techniques to 
extend these types of statistical methods to continuous 
and non-independent samples, such as ship motion 
time histories.  The level of significance associated 
with these statistical testing methods can satisfy a re-
quirement for quantified accuracy.  However, for 
engineering purposes, statistical similitude does not 
necessarily constitute a required level of correlation. 

Some quantifiable differences between the simula-
tion and the benchmark data may be acceptable for a 
given SIU.  Further, the intended use of a simulation 
tool may allow for application of a margin to simula-
tion results.  If so, the validation effort may be most 
effective if it provides quantifiable measures of the 
demonstrated accuracy of the tool in lieu of a binary 

accreditation outcome (i.e. accredited or not accre-
dited). 

3.1 Interpretation of Results 

The combined uncertainty intervals surrounding a dif-
ference between simulation and benchmark statistics 
enclose the region within which the “true” difference 
between populations is found.  The level of confi-
dence associated with interval calculations corres-
ponds to the probability that the true difference is 
within the interval limit.  For a 90% level of confi-
dence, there is a 90% probability that the difference 
between the simulation and benchmark results is be-
tween the lower and the upper interval  
extents. 

Positive values denote a simulation value which is 
greater than the benchmark (over-prediction) while 
negative values denote under-prediction.  A ze-
ro-crossing of an interval denotes the possibility that 
there is no difference between the underlying popula-
tions (similar to the objectives achieved through sta-
tistical inference tests).  It should be noted, however, 
that the confidence level associated with the interval 
does not equal the probability that the difference is 
zero.  In fact, there is equal likelihood that the true 
difference falls anywhere else within the interval ex-
tents. 

For some purposes, a relative metric may be more 
suitable for comparison purposes.  By dividing the 
difference (and interval limits) by the benchmark sta-
tistic value, a %-difference (and associated uncertain-
ty) is generated.  Both the difference and 
%-difference comparison measures can be used to 
apply parameter-level acceptance criteria for a single 
condition or can be used to examine simulation para-
meter accuracy trends over a range of conditions. 

3.2 Parameter Acceptance Criteria 

As noted above, when the uncertainty interval on the 
difference crosses zero, there may be no difference 
between the two populations.  As a potential para-
meter-level acceptance criteria, a zero-crossing of dif-
ference intervals is most analogous to an overlap of 
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uncertainty intervals associated with two data sets.  
Note, however, that zero-crossing is a more “strict” 
measure of similitude than interval overlap.  For 
same level of significance, it is mathematically possi-
ble for the intervals to slightly overlap without the 
corresponding interval on the difference crossing 
through zero.  Comparison A in Fig. 2 below illu-
strates a case of the uncertainty interval on percent 
difference crossing through zero.   

 

Fig. 2: Options for parameter-level criteria applica-
tion based on the difference between population sta-

tistics 

 While zero difference is generally a goal for most 
validation efforts, a region around zero can be defined 
to capture a broader and more requirement-specific 
measure of successful agreement.  A criterion which 
would require some part of the difference interval to 
fall within this region (i.e. margin) can be an effective 
way to link specific requirements to validation com-
parisons.  For example, the acceptance criteria may 
state that simulation roll standard deviation values 
must potentially agree with benchmark values by 5%.  
For a specified significance level, any interval falling 
at least partially within –5% and +5% could satisfy the 
criterion.  Comparisons A, B, and D in Fig. 2 illu-
strate cases in which the uncertainty intervals on the 
percent difference extend into a margin region defined 
about zero. 

In additional to providing a test for statistical equi-
valence or good correlation, the difference can be used 
to investigate other aspects of comparison results.  

Based on the requirements associated with the SIUs, 
the application of a criterion to bound the differences 
(i.e. limit) may be a more applicable approach.  This 
may be the case if the SIU is related to safety and po-
tential differences are more important than potential 
similarities.  For example, acceptance criteria may 
require that simulation results not differ from bench-
mark data by more than 20%.  For a specified signi-
ficance level, any interval falling entirely within the 
limits of –20% and +20% would satisfy the require-
ment.  Further, if conservatism is a goal, the bounds 
on the difference could be asymmetric, such as re-
quiring all parts of the interval to fall between –10% 
and +20%.  Cases A, B, and C in Fig. 2 satisfy this 
type of limit criterion, while the uncertainty associated 
with case D suggests the differences could be greater 
than the limiting value. 

If validation requirements are well-defined, a com-
bination of limits and margins can be employed to 
form a multi-faceted parameter-level criterion.  For 
example, the requirements associated with the SIUs 
may identify good correlation as standard deviation 
values within ±5% of benchmark results and unac-
ceptable differences greater than ±20%.  Cases A and 
B in Fig. 2 would satisfy both the margin and limit 
criteria.  Case C passes the limit criterion but fails to 
demonstrate sufficient performance by not extending 
into the margin region.   

Case D demonstrates sufficient correlation (interval 
extends into the margin region) while also suggesting 
the possibility of excessively large differences (inter-
val extends into limit region).  In this case, the un-
certainty in the comparison is too large to adequately 
determine a successful comparison outcome.  For 
validation purposes, it is important to distinguish be-
tween the outcomes of cases C and D.  While case C 
demonstrates a lack of correlation, case D provides 
evidence of good correlation, but the comparison is 
hindered by the large uncertainty in the validation data 
sets. 

3.3 Broad View of Simulation Accuracy 
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The acceptance criteria methodologies based on the 
differences between benchmark and simulation statis-
tics described in the previous section are most useful 
as part of a multi-level acceptance criteria structure.  
Typically, for a given condition, several key parame-
ters (e.g. roll, pitch, etc.) must pass parameter criteria 
in order to consider the overall comparison of the 
condition a success.  The purpose of this requirement 
is to provide evidence that the overall physics under-
lying a given condition are adequately captured by the 
simulation tool.  While this methodology is sound, 
the information provided as a result of multi-level cri-
teria application is limited in value.  A condition, or 
some percentage of conditions, is determined to pass 
or fail the criteria.  The question answered through 
accreditation is, “Is the tool accurate enough to be 
used for the SIUs?”.  The question which cannot be 
answered by this approach is, “How accurate is the 
simulation tool?”. 

A particularly useful attribute of the difference be-
tween statistics is its ability convey information about 
a simulation’s accuracy for a given parameter across a 
range of conditions.  The following section provides 
an example of this utility using notional comparison 
data. 

4. Sample Data 

Fig. 3 below presents notional data similar to results 
which may be used for simulation tool validation.  
The values shown have been generated using typical 
ship response in large seas, but are not attributable to 
any particular ship.  Standard deviation values are 
plotted with 90% confidence intervals for ten different 
environmental conditions.  Benchmark results are 
shown in red and simulation results are shown in blue.  
The data presented are assumed to share the same op-
erational condition (e.g. head seas, 10kts full-scale 
ordered speed) with varying wave characteristics. 

Application of an interval overlap criterion would 
result in the passing of all conditions except for B 
and D.  However, the differences between standard 
deviation values in those cases may still be small 

enough to satisfy the requirements of the SIUs.  Fig. 
4 shows the difference (and 95% confidence interval 
on the difference) for the same ten cases. 

Examination of the comparison difference results 
provides additional quantifiable comparison results.  
For example, there is at least a 95% probability that 
the difference in all conditions is less than +1.5 deg 
(over-prediction) and –1.0 deg (under-prediction).  
Also, all ten comparisons show evidence of possible 
correlation within ±0.5 deg.  Note that cases B and D, 
whose individual data set intervals do not overlap, are 
the only conditions whose interval on the difference 
does not pass through zero. 

 

Fig. 3: Notional Validation Data Sets for Roll Stan-
dard Deviation of Ship In Heavy Seas 

 

Fig. 4: Difference in Roll Standard Deviation Values 
(Notional Validation Data) 
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Fig. 4 provides the viewer the opportunity to focus 
on the quantified accuracy of each comparison.  
However, presented this way, the context of each 
comparison is not apparent.  Specifically, Fig. 4 does 
not allow the viewer to draw inferences about the si-
mulation accuracy as it relates to ship response.  By 
plotting the difference values for all conditions (A–J) 
as a function of the benchmark standard deviation 
value, this context is returned to the comparison.  
Fig. 5 illustrates this approach. 

  

Fig. 5: Difference in Roll Standard Deviation Values 
as a Function of Benchmark Value (Notional Data) 

Horizontal red error bars are added to the difference 
values plotted in Fig. 5 to indicate the 90% uncertain-
ty associated with the benchmark standard deviation 
value (x-axis).  The overall quantified accuracy is 
unchanged from that described in discussion of Fig. 4, 
but additional insight is provided by the plotting tech-
nique of Fig. 5.  For example, the simulation tends to 
over-predict when the ship is most excited (i.e. differ-
ences are more positive than negative at higher 
x-values).   

The ability to distinguish between conditions as a 
function of expected ship motion response may be 
important if, for example, the SIU is directly tied to 
safety.  In this case, simulation accuracy may be 
most important for conditions in which the roll stan-
dard deviation values are large.  As such, it may be 
determined that conditions with “small” expected 
responses are not desired for validation.  The purple 

dashed line in Fig. 5 identifies the threshold between 
values (both simulation and benchmark) which are 
less than and greater than 3.5 deg.  This line is ana-
logous to a horizontal line on Fig. 3 at y = 3.5 deg.  
Using this metric, conditions C and E are denoted as 
small response conditions, while conditions J and A 
may or may not be considered small motions.   

The comparisons presented in Fig. 4 and Fig. 5 can 
be modified to reflect the percent difference between 
the simulation and benchmark results, as shown in 
Fig. 6 and Fig. 7.  The purple dashed line in Fig. 7 
again identifies the threshold between values less than 
and greater than 3.5 deg. 

As indicated in Fig. 6, the simulation correlates 
with benchmark data to within ±30% for most cases, 
but conditions C, E, and J display larger percent dif-
ferences.  Fig. 7 shows that these conditions coincide 
with the smallest ship motion response cases.  If 
these cases are not of interest for accreditation, the 
simulation can be said to agree with benchmark results 
within –20% and +30%. 

 

5. Conclusions 

The difference between population statistics is pro-
posed as a primary acceptance criteria metric for the 
direct quantitative validation of ship simulation tools in 
support of accreditation for uses related to ship mo-
tions in irregular seas.  This metric can be used to 
achieve traditional goals of this type of validation, in-
cluding investigation of statistical similitude.  It pro-
vides a quantifiable measure of comparison accuracy, 
which incorporates a level of significance associated 
with the uncertainty in the data as well as a quantified 
measure of agreement between benchmark and simula-
tion statistical results.  This metric can be used to 
generate acceptance criteria linked to the requirements 
of the SIUs by incorporating margins and limits on 
simulation accuracy.  Finally, this metric can be used 
for parameter level criteria application (i.e. resulting in 
pass/fail conclusions) as well as across multiple condi-
tions simultaneously to provide a broad view of simu-
lation accuracy.   
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Use of the difference between population statistics 
(including uncertainty) as an acceptance criteria metric 
builds upon established validation techniques typically 
reserved for deterministic processes while also utiliz-
ing the body of work associated with the quantification 
of uncertainty of ship motion responses in irregular 
seas. 

  

Fig. 6: Percent Difference in Roll Standard Deviation 
Values (Notional Validation Data) 

 

Fig. 7: Percent Difference in Roll Standard Deviation 
Values as a Function of Benchmark Value (Notional 

Data) 
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