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ABSTRACT  

In this study, the convenience method for the onboard evaluation of the transverse stability is 
proposed based on an exponential autoregressive modeling procedure, which is a kind of time series 
analysis. The verification of the proposed method is implemented by using results of model 
experiments concerning the parametric roll resonance and onboard data under the ordinary 
navigation. It can be confirmed that transverse stability can evaluate by monitoring the behavior of 
characteristic roots on the exponential autoregressive model. 
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INTRODUCTION 

For officers, the transverse stability is very 
important factor to keep the safe navigation of 
the operating ship. In general, officers confirm 
the static transverse stability by using a loading 
calculator. However, in actual navigation, the 
transverse stability changes due to the 
influence of waves. In extraordinary 
circumstances, the ship occurs of a serious 
accident such as the capsizing. Therefore, in 
order to protect the accident, we consider that 
officers should keep monitoring the roll motion, 
which is directly related with the transverse 
stability during the navigation. If we can 
always monitor the roll motion, then we can 
understand the state of the motion 
appropriately by using the knowledge of the 
time series analysis. Note that there is many 
studies such as have been published in the past 
STAB conference and the ISSW [e.g. Umeda et 
al (2007), Kawahara et al (2009), Francescutto 
& Umeda (2010), Umeda & Yamamura (2010) 
and so on] from the viewpoint of naval 
architecture concerning this issue. 

In a little past, we showed the relationship 
between the dynamical system of the linear or 
the nonlinear roll motion and the time series 
model [Terada & Matsuda, 2011]. That is, the 
dynamical system of the linear roll motion can 
be approximated by the stationary 
autoregressive model, and the dynamical 
system of the nonlinear roll motion can be 
approximated by the time-varying 
autoregressive model. Thus, if we can get the 
time series data of the roll motion, we can 
evaluate the transverse stability directly for any 
data intervals by using the results of the 
stationary or the time-varying autoregressive 
modeling. However, using of these methods is 
difficult for the onboard evaluation of the 
transverse stability, because the calculation 
cost is too large. 
To solve this problem, we attempt to apply an 
exponential autoregressive modeling procedure 
[Haggan & Ozaki, 1981]. In this procedure, the 
time-varying autoregressive coefficient is 
approximated by the exponential function, and 
the estimation calculation of coefficients is 
implemented by the least sqares method. As 
well as the time-varying autoregressive 
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modeling procedure, in the exponential 
autoregressive modeling procedure a 
characteristic root calculated from a 
characteristic equation of the model is also very 
important to evaluate the transverse stability. 
That is, if all characteristic roots lie inside of 
the unit circle, then the system is stationary and 
stable. Moreover, when the real part of the 
characteristic root changes from 
positive/negative to negative/positive, the 
dynamical system for the roll motion can be 
evaluate as the nonlinear for the damping force. 
And also, when the imaginary part of the 
characteristic root changes from 
positive/negative to negative/positive, the 
dynamical system for the roll motion can be 
evaluated as the nonlinear for the restoring 
force. Therefore, since officers can understand 
the dynamics of the roll motion under 
navigation in detail, it is considered that the 
proposed method is useful as the way to 
motivate the safe navigation in officers. 
To confirm the effectiveness of the proposed 
method, we analyzed the data of the steady 
state and the parametric roll resonance. The 
obtained findings are reported. 

NONLINIEAR STOCHASTIC DYNAMICAL 
SYSTEM 

Consider the following nonlinear stochastic 
dynamical system concerning the roll motion: 
 
x(t)+ f ( x(t))+ g(x(t)) = u(t)   (1) 
 
where x(t) indicates a roll angle, the notation (·) 
and (··) indicate the 1st and the 2nd order 
deferential operator with time, f( ) indicates the 
nonlinear mapping function concerning the 
damping force, g( ) indicates the nonlinear 
mapping function concerning the restoring 
force and u(t) indicates an external disturbance 
that is treated with the random variable, 
respectively. Note that u(t) has the finite 
variance, but is not white noise sequence. And 
Equation 1 can be written by the following 
vector form: 
 
xt = f xt( )+ut     (2) 

where, as the notation (T) means the transpose,  
xt = x(t), x(t)[ ]T ,

f xt( ) = − f (x(t))− g(x(t)), x(t)( )T ,

ut = u(t), 0[ ]T
. 

According to the locally linearization method 
[Ozaki, 1986], Equation 2 can be discretized as 
follows: 
 
xn = EXP Kn−1Δt[ ] ⋅xn−1 +Bn−1un  (3) 
 
where,  

xn = xn, xn[ ]T , Kn =
1
Δt
LOG An( ),

An = I+ Jn
−1 EXP JnΔt( )− I{ }Fn,

LOG An( ) = (−1)k

k
An − I( )k

k=1

∞

∑ ,

Jn =
∂f xn( )
∂xn

, Fnxn =
− f ( xn ) −g(xn )
xn 0

&

'

(
(

)

*

+
+,

 

∆t indicates a discrete interval and Bn-1un is a 
two-dimensional colored noise sequence, 
which is obtained by the stochastic integral. 
TIME SERIES MODEL 

In Equation 3, since the term of the noise is not 
the white noise sequence, it is necessary to 
transform the colored noise sequence into the 
white noise sequence in order to deal with the 
problem stochastically. As the way to do the 
whitening, Yamanouchi (1956) showed the 
way to use the discrete autoregressive process. 
That is, in Equation 3, let  
 
εn ≡ Bn−1un .    (4) 
 
Then this can be approximated by the 
following m-th order discrete autoregressive 
process. 
 

εn = Di
i=1

m

∑ εn−i +wn, εn =wn for i = 0( ), (5) 

 
where wn is a 2×2 Gaussian white noise 
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sequence with N(0,diag(σ12, σ22)) and Dn 
indicates a 2×2 autoregressive coefficient 
matrix. On the other hands, the following 
relation is evident. 
 
εn = xn −An−1xn−1
εn−1 = xn−1 −An−2xn−2


εn−m = xn−m −An−m−1xn−m−1

  (6) 

 
Therefore, by substituting Equations 6 into 
Equation 5, we can obtain the following two 
dimensional (m+1)–th order time-varying 
autoregressive model.  
 

xn = Ci
i=1

m+1

∑ xn−i +wn.    (7) 

 
Here Ci (i=1,…,m+1) is the time-varying 
autoregressive coefficient matrix, which is 
expressed as follows: 

C1 =D1 +An−1, C2 =D2 −D1An−2,,
Cm =Dm −Dm−1An−m, Cm+1 = −DmAn−m−1.

 

Moreover, by using the following relation 
 

xn ≅
1
Δt

xn − xn−1( ) ,   (8) 

 
Equation 7 can be approximated by the 
following the M-th ( ≧	 m+1 ) order scalar 
time-varying autoregressive model 
 

xn = an, i
i=1

M

∑ xn−i +wn,    (9) 

 
where an,i indicates time-varying autoregressive 
coefficients, wn is the Gaussian white noise 
sequence with N(0,σ22). Now, since an,i is time-
varying autoregressive coefficients, suppose 
that the following relation 
 

φi +π i exp −γ xn−1
2"# $%{ }

i=1

M

∑ ≅ an, i
i=1

M

∑ , (10) 

 
where φi is a linear term of autoregressive 

coefficients, πi is a time-varying term of 
autoregressive coefficients and γ is a scaling 
parameter. Thus, Equation 9 can be written as 
follows: 
 

xn = φi +π i exp −γ xn−1
2"# $%{ }xn−i

i=1

M

∑ +wn .     (11) 

 
This time series model, which is called an 
exponential autoregressive (Exp AR) model, is 
firstly introduced by Ozaki & Oda (1978). And 
then characteristics are investigated by Haggan 
& Ozaki (1981). According to Haggan & Ozaki 
(1981), consider the following characteristic 
equations of Equation 11:  
 

λM −φ1λ
M−1 −−φM−1λ −φM = 0

: As xn−1 = 0

λM − φ1 +π1( )λM−1 −−

φM−1 +πM−1( )λ − φM +πM( ) = 0
: As xn−1 = ±∞

#

$

%
%
%

&

%
%
%

     (12) 

 
Note that the Exp AR model is one class of the 
radial basis function (RBF) approximation 
model in the neural network approach. As the 
study of the prediction of time series for roll 
motion, there is Ueno & Han (2013). 
If all roots of these equations lie inside of the 
unit circle, then the nonlinear stochastic 
dynamical system is stationary and stable. 
Moreover, when the real part of the 
characteristic root changes from 
positive/negative to negative/positive, the 
dynamical system for the roll motion can be 
evaluate as the nonlinear for the damping force. 
And also, when the imaginary part of the 
characteristic root changes from 
positive/negative to negative/positive, the 
dynamical system for the roll motion can be 
evaluated as the nonlinear for the restoring 
force. 

FITTING OF THE TIME SERIES MODEL 

As to the estimation of the model order M and 
the coefficients {γ, (φi, πi; i = 1, …, M)} in the 
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Exp AR model, for simplicity, by fixing the 
parameter γ at one of a grid of values, we 
estimated the model order M and the 
corresponding φi, πi parameters as well as 
Haggan & Ozaki (1981). As N is the total 
number of observations, after fixing γ = γ0, the 
Exp AR model for n = M+1, …, N; i = 1,…, M 
can be written as follows: 
 

xn = φi +π i exp −γ0xn−1
2"# $%{ }xn−i

i=1

M

∑ +wn .   (13) 

 
So the matrix form of Equation 13 can be 
written X(n) = Hβ + w, where, n = N – M, …, N, 
X(n) = xn, xn−1,, xn−(N−M−1)( )

T
,

Y(n) = exp[−γ0xn
2 ]xn, exp[−γ0xn

2 ]xn−1,( 

, exp[−γ0xn
2 ]xn−(N−M−1))

T
,

H = X(n−1),Y(n−1),X(n−2),Y(n−2),,X(n−i),Y(n−i)( ),
β = φ1,π1,φ2,π 2,,φi,π i( )T ,

w = wn,wn−1,,wM+1( )T ,

 

so that the normal equations for β become X(n) 
= Hβ. Hence β can be found from  
 
β̂ = HTH( )

−1
HX(n) .       (14) 

 
The model order M of the fitted model is 
selected by using the Akaike Information 
Criterion (AIC) for nonlinear time series 
(Ozaki & Oda, 1978) 
 
AIC(M ) = (N −M )logσ̂ 2, M

2 + 2 2M +1( )  (15) 
 
where  
 

σ̂ 2, M
2 =

ŵN
2 + ŵN−1

2 ++ ŵM
2( )

N −M
     (16) 

 
is the least sqares estimate of the residual 
variance of the model. 

VERIFICATION 

Used time series data 

To verify the proposed procedure, we analysed 
the data of the steady state and the parametric 
roll resonance. As to the data of the steady state 
under the ordinary navigation, we used the roll 
angle data of the research vessel “Taka-maru”, 
which belongs the NRIFE. Table 1 shows the 
principal particulars of Taka-maru. The data as 
shown in Fig.1 was measured at sampling 
interval 0.1 [s] when the ship was running 4 
knots in beam waves. From this figure, it can 
be seen that the maximum value of the absolute 
value of the roll angle is about 5 degrees and 
the motion is steady and stable. However, since 
the size of the ship is small, we fell that the 
ship shakes intensely. Actually, some of the 
crew for measurement of data became 
seasickness. 
 
Table 1: Principal particulars of the Taka-maru. 

Items Ship 

Length between perpendiculars: L 25.0 m 

Breadth: B 5.2 m 

Mean draft: T 2.0 m 

Block coefficient: Cb 0.442  

Metacentric height: GM 0.52 m 

Natural roll period: Tφ 5.95 s 

 

0 300 600 900 1200 1500 1800-30
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30

Time s tep

Roll angle [deg]

 

Fig. 1: Time series of the roll angle measured in onboard. 
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As to the data of the parametric roll resonance, 
we used results of model experiments 
concerning the Post-Panamax Container ship 
implemented by Hashimoto et al (2005). Table 
2 shows the principal particulars of the sample 
ship. The data as shown in Figs.2 ~ 3 was 
measured at sampling interval 0.1 [s], when the 
ship was running under the condition of 
causing the parametric roll resonance in head 
seas. Fig. 2 shows the result in regular waves 
and Fig. 3 shows the result in irregular waves. 
From the Fig. 2 in shown the result of regular 
waves, it can be seen that the amplitude 
becomes large rapidly after about the 300th, and 
becomes the steady state in roll angle 25 
[degrees]. From the Fig. 3 in shown the result 
of irregular waves, it can be seen that the  
 
Table 2: Principal particulars of the sample ship by using 

the study of Hashimoto et al (2005). 

Items Ship Model 

L 238.8m 2.838m 

B 42.8m 0.428m 

T 14.0m 0.14m 

Cb 0.630  0.630  

GM 1.08m 0.0106m 

Tφ 30.3 s 3.20 s 
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Fig. 2: Time series of the roll angle measured in model 
experiments: The result of regular waves. 

absolute value of amplitude exceeds 10 degrees 
in about the 500th ~ 900th and about 1100th ~ 
1800th. 
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Fig. 3: Time series of the roll angle measured in model 
experiments: The result of irregular waves. 

Results and discussions 

The analysis for (N-300) samples based on the 
Exp AR modelling was recursively performed 
for 300 samples. Figs. 4 ~ 6 show the 
arrangement of characteristic roots calculated 
by using the Equation 12. Fig. 4 shows results 
concerning the onboard data as shown in Fig. 1, 
F ig .  5  shows  resu l t s  concern ing  the 
experimental data in regular waves as shown in 
Fig. 2, and Fig. 6 shows results concerning the 
experimental data in irregular waves as shown 
in Fig. 3, respectively. In these figures, the left 
hand side shows the result of first 300 samples 
and the right hand side shows all results of (N-
300) samples, respectively. And the symbol 
“○” indicates the characteristic root in the case 
of xn-1 = 0 and the symbol “×” indicates the 
characteristic root in the case of xn-1 = ±∞, 
respectively. As mentioned before, all 
characteristic roots lie inside of the unit circle, 
then the system is stationary and stable. 
Moreover ,  when the real  par t  of  the 
c h a r a c t e r i s t i c  r o o t  c h a n g e s  f r o m 
positive/negative to negative/positive, the 
dynamical system for the roll motion can be 
evaluate as the nonlinear for the damping force. 
And also, when the imaginary part of the 
c h a r a c t e r i s t i c  r o o t  c h a n g e s  f r o m 
positive/negative to negative/positive, the 
dynamical system for the roll motion can be 
evaluated as the nonlinear for the restoring 
force. In Fig. 4, it can be seen that all 
characteristic roots lie inside of the unit circle 
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and the arrangement of symbols “○” and “×” 
are almost same. Therefore, we can judge that 
the onboard data as shown in Fig. 1 is the 
stationary and stable. In Fig. 5, it can be seen 
that all characteristic roots do not lie inside of 
the unit circle. As to the result of first 300 
samples, one pare is outside of the unit circle. 
Therefore, we can judge that the experimental 
data as shown in Fig. 2 is the unstable from the 
analysis of the data of first 300 samples only, 
although the amplitude of the roll angle is very 
small. In this case, officers must devise 
thoroughgoing measures to prevent the large 
amplitude roll motion based on the applied ship 
operation. In the right hand side of Fig. 6, it 
can be seen that all characteristic roots do not 
lie inside of the unit circle. Thus, we can judge 
that the experimental data of (N-300) samples 
in irregular waves as shown in Fig. 3 is the 
non-stationary and unstable. However, as to the 
result of first 300 samples as shown in the left 
hand side of Fig. 6, all characteristic roots lie  
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Fig. 4: Characteristic roots calculated by using Equation 12 
concerning the onboard data as shown in Fig. 1: The left hand 
side shows the result of the data of first 300 samples; The right 
hand side shows all results of (N-300) samples. 
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Fig. 5: Characteristic roots calculated by using Equation 12 
concerning the experimental data in regular waves as shown in 
Fig. 2: The left hand side shows the result of the data of first 
300 samples; The right hand side shows all results of (N-300) 
samples. 
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Fig. 6: Characteristic roots calculated by using Equation 12 
concerning the experimental data in irregular waves as shown 
in Fig. 3: The left hand side shows the result of the data of first 
300 samples; The right hand side shows all results of (N-300) 
samples. 

inside of the unit circle, this case is the 
stationary and stable, although a few 
nonlinearity with respect to the restoring force 
because bath characteristic roots indicated with 
“○” and “×” are different concerning imaginary 
part. It means that officers must always pay 
attention to the roll motion in order to prevent 
the large amplitude roll motion in irregular 
waves. From these results, we can conclude 
that officers can keep the safe navigation in the 
meaning of preventing the large amplitude roll 
motion by monitoring it based on the Exp AR 
modelling. 

CONCLUSIONS 

In this study, we propose the onboard 
evaluation method of the transverse stability 
for officers based on the exponential 
autoregressive modeling procedure. To confirm 
the effectiveness of the proposed method, we 
analyzed the data of the steady state and the 
parametric roll resonance. As the result, we can 
confirm that the characteristics of the 
dynamical system for the roll motion can 
understand by monitoring the behavior of the 
characteristic root of the characteristic equation 
in the exponential autoregressive model. 
Therefore, we conclude that the proposed 
method can be used as the navigation support 
system to protect the serious accident. 
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