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ABSTRACT  

The paper addresses one of the critical elements of statistical uncertainty of simulated or measured 

roll motions – confidence interval of the variance estimate. The paper revisits the derivation of the 

formula for the variance of the sample variance of a stationary stochastic process in order to re-

examine the assumptions, especially the one related to the process having a normal distribution. The 

relation between the formula and the confidence interval based on treating the variance estimate of 

different records as separate data points is also considered. 
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INTRODUCTION 

With the development of advanced 

hydrodynamic codes capable of predicting very 

nonlinear roll motions, there is an opportunity 

for the time domain assessment of dynamic 

stability to become a part of the design process. 

While addressing the issue of the nonlinearity 

of large-amplitude motion, time domain 

simulations create the issue of statistical 

uncertainty. A time domain simulation of ship 

motions in irregular seas is a Monte-Carlo 

method, so any result derived from them (such 

as the variance of a mode of motion) is a 

random number. The same is true for the 

results of model tests in irregular waves and 

full scale seakeeping trials. 

Since the random nature of these results is 

inherent and cannot be avoided, it is essential 

to characterize the uncertainty and make it a 

part of the design analysis. Characterization of 

the statistical uncertainty of these results is the 

main objective of the paper. 

While evaluation of the confidence interval of 

the sample variance is one of the most basic 

statistical problems, there are several details 

that tend to complicate its evaluation. 

First, the inertia of the ship leads to statistical 

dependence between successive points of the 

motion time series.   

Second, the process of large-amplitude roll 

response is nonlinear and cannot be assumed to 

be Gaussian. Unfortunately, the “standard” 

formulae for the confidence interval use this 

assumption in one way or another. Parametric 

roll is a good example of such a process; see 

e.g. Hashimoto et al (2006). 

Third, the nonlinearity of stability-related 

problems may lead to the practical 

inapplicability of the ergodic assumption when 

multiple records are required to carry out the 

analysis. This problem became particularly 

clear while attempting to compare parametric 

roll results (Reed, 2011). 

Thus, the method of characterization of 

statistical uncertainty of the results of the time-
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domain numerical simulations (or model tests 

in irregular waves) must be able to treat these 

three features of large-amplitude roll motion: 

dependence, non-Gaussian distribution and 

practical non-ergodicity.  

In an attempt to account for dependence, 

Belenky & Weems (2008) used a standard 

formula (Priestley, 1981) where the estimate of 

the autocorrelation function was introduced to 

handle the data dependence. Practical non-

ergodicity is addressed by considering several 

records of roll, as was done in (Reed, 2011). 

The “last mile” is the assumption of the 

Gaussian distribution used in standard formula 

in all the cited works. The focus of this paper is 

to understand influence of this assumption and 

see if it can be avoided. 

THEORETICAL ANALYSIS 

Measure of Uncertainty 

The calculation of the confidence interval of a 

statistical quantity requires an assumption of 

the distribution of that quantity. With few 

exceptions (a mean value estimate of the 

normal variable follows the Student t-

distribution, while the estimate of the variance 

has a chi-square distribution), these 

distributions  are unknown. 

The assumption that the estimate follows the 

normal distribution is based on the central limit 

theorem, since estimates involve summation of 

random numbers. The caveat is that the sample 

size should be large enough, as the central limit 

theorem, strictly speaking, addresses a limiting 

distribution (as hinted by its name). One should 

be especially careful applying the normal 

distribution for the variance estimate as the 

variance is a positive value by definition, while 

the normal distribution also supports negative 

numbers. Nevertheless, if the sample size is 

large enough, the confidence interval is 

expected to be relatively small and the 

influence of asymmetry of the real distribution 

of the estimate may be neglected. The sample 

size is expected to be large, because several 

records are needed to handle practical non-

ergodicity. 

Once the assumption of the normal distribution 

of the variance estimate is accepted, the 

variance of the variance is the only value 

needed to calculate the confidence interval. 

Variance of Mean Value Estimate 

Priestley (1981) gives a general direction on 

the derivation of the formulae for the mean 

value and variance estimates. This derivation is 

reproduced here, in order to understand the 

necessity and role of the Gaussian assumption 

for the distribution of the process. Consider the 

variance of the mean value estimate m̂  (the 

symbol above means “estimate”) of a 

stationary process x represented as a record 

with N points without any further assumptions. 
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where Var(..) is the variance operator and 

Cov(..) is the covariance operator. Equation (1) 

is a standard one; it expresses the variance of a 

sum of dependent random variables. Since the 

process x is assumed stationary, its auto-

covariance function depends only on the 

difference in time (time lag) between the two 

points and does not depend on particular time 

instances:  
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Consider a sum of all the elements of the 

covariance matrix that are needed to compute 

the variance of the mean estimate in Equation 

(1): 
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Note that all the elements of the main diagonal 

of the covariance matrix are the same and equal 

to variance of the process V, since the auto-

covariance function calculated for 0=0 is the 

variance: 

 VxVarRR  )()0()( 0  (4) 

In fact all the elements on the line parallel to 

the main diagonal are also the same; the next 

element to the term R(0)=V is always R(1), 

then R(2) and so forth.  

The main diagonal of a N×N square matrix 

contains N elements; the line of elements 

parallel to the main diagonal and located next 

to it, contains only N-1 elements. Each next 

line will have one element less, until it comes 

to the low-left or upper-right corner with one 

element only. Thus the sum in Equation (1) can 

be presented as (having in mind, that the 

covariance matrix is symmetric relative to its 

main diagonal and all the “lines of elements” 

except the main diagonal are encountered 

twice): 
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Substitution of Equation (5) into Equation (1) 

leads to the standard formula for the variance 

of the mean value estimate (see e.g. Priestly, 

1981) 
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The first term in Equation (6) is actually a 

variance of the mean estimate of the random 

variable, while the second term accounts for 

the dependence between the data points of a 

stochastic process. As expected, if the process x 

is uncorrelated white noise (Wiener process), 

the result is identical to one for the random 

variable, because the auto-covariance function 

of the white noise equals zero for all non-zero 

time lags. 

Variance of Variance Estimate 

By definition the variance is the average of 

centered squares, thus a process y is introduced 

as: 

    22
m̂xmxy iii   (7) 

Then the estimate of the mean value of the 

process y is the estimate of the variance of the 

original process x: 
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Then the variance of the mean estimate of the 

process y is the variance of the variance 

estimate of the process x: 
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where Vy and Ry are the variance and the auto-

covariance function of the process of centered 

squares y, respectively.  

This is the place when the assumption of the 

Gaussian distribution for the process x is made 

in order to arrive at the standard formula of the 

variance of the variance estimate. If the process 

x has a normal distribution: 
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Substitution of (10) into (9) leads to the 

standard formula for variance of the variance 

estimate (see e.g. Priestly, 1981): 
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Equation (11) can also be expressed in an 

alternative form where the symmetric 

properties of the covariance matrix are not 

used. This form was used, for example, in 

(Reed, 2011): 
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Note that (12) does not have an explicit term 

that includes the variance, but since the index 

of the time lag goes through zero, this term is, 

indeed, included. 

It seems that there is no apparent reason to use 

the Gaussian assumption.  The calculation of 

(5) 
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the auto-covariance function of the centered 

squares requires a little additional computation 

effort in comparison with straight auto-

covariance function.  

Variance of Ensemble Variance 

Consider an ensemble of Nr records, each with 

Ni data points. The time increment is assumed 

to be the same for all the records, which is the 

usual practice for both numerical simulations 

and model tests.  

Then the statistical weight for each record is 

expressed as follows 
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where Ntotal is the total number of points in the 

ensemble. The ensemble estimate for the mean 

value is calculated for all the points  
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where im̂  is the mean value estimate for a 

record i. The data point xi,j in Equation (14) has 

two indexes i for the record and j is the index 

within a record. Since the records can be of 

different lengths, the set of data points xi,j do 

not constitute a matrix. The ensemble estimate 

for the variance is expressed analogously to the 

mean value: 

 
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where iV̂  is the variance estimate for record i. 

The variance of the ensemble variance estimate 

can be calculated as: 
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where the variance of the variance estimate for 

each record is taken from Equation (9). 

Direct Estimate of Variance of the Variance 

Consider the variance estimate of each record 

as a realization of a random number. The 

average variance of the record estimate is 

(accounting for the fact that each variance 

estimate with the ensemble has a statistical 

weight Wi,) 
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Equation (17) is not equivalent to Equation 

(16); it gives the average variance of each 

record, so it should be equivalent to Equation 

(9) averaged through the ensemble. The 

variance of the ensemble estimate should be 

treated as the variance of the mean of the 

record estimates: 
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Substituting Equation (8) into (18): 
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Using the known formula for the square of a 

sum, one can write: 
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The second term in equation (20) can be 

considered as an estimate for the auto-

covariance function of a single record of 

centered squares that uses population mean 

(15) instead of a record mean. It has to be 

distinguished from the estimate based on the 

record data only: 
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The first term in the formula (20) is the same 

estimate auto-covariance at zero time lag. Thus 
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Equation (22) is similar Equation (9). The 

difference is that not only averaging over all 

the records in the ensemble, but also uses the 

population mean instead of the record mean for 

calculation of the auto-covariance function. 

Thus direct estimate of the variance of variance 

(17) is equivalent to population average of the 

record variance of variance, where population 

mean is used for evaluation of auto-covariance 

function of the centered squares. 

NUMERICAL ANALYSIS 

Source of Ship Roll Data 

A hybrid model (Weems & Wundrow, 2013) 

was used to reproduce roll motion as a fast and 

easy way to reproduce roll motions with the 

correct type of nonlinearity. The model 

calculates the Froude-Krylov and hydrostatic 

forces on the actual submerged volume for 

three degrees of freedom: heave, roll and pitch. 

Calculations were performed for the ONR 

tumblehome topside configuration (Bishop, et 

al, 2005); this configuration is representative of 

an unconventional hull design and produces 

sufficiently nonlinear motions bringing into 

question the Gaussian assumption for roll 

motions while assessing statistical uncertainty.  

The motions were simulated for a sea state 

described by a significant wave height of 7.5 m 

and a modal period of 15s. Long-crested 

irregular waves were modeled with the 

Bretschneider spectrum. The speed was 6 knots 

in stern-quartering seas (45 degrees). The 

spectrum was discretized with 100 uniformly 

distributed frequencies that facilitated 

modeling 10 minute long records. The 

ensemble (population) consisted of 300 records 

totaling 50 hrs worth of data. 

Estimation of Auto-Covariance 

Strictly speaking, only the auto-covariance 

function for centered squares is needed for 

Equation (9), however, it may be instructive to 

look at the auto-covariance of the original 

process as well. The formal definition of the 

auto-covariance estimate is given in Equation 

(21) and rewritten here for the process x 
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When the time lag I becomes large, the 

volume of the sample available for averaging 

decreases dramatically. From Figure 1, an 

increase in the magnitude of the auto-

covariance function for the large time lags can 

be observed. 

This loss of accuracy can be alleviated by a 

simple weighting factor: (N-i)/N, re-writing 

Equation (23) as follows: 
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The weighting results in little change to the 

auto-covariance function for small time lags as 

the difference between N and N-i is not 

significant for small i.  When the index i 

becomes large, the amount of available data 

decreases and therefore the influence of its 

contribution also decreases. The result of 

weighting the estimate of the auto-covariance 

function is shown in Fig 2.  

 

Fig. 1: Auto-covariance function estimated from a single record 

using Equation (23). 

 

Fig. 2: Auto-covariance function estimated from a single record 

using Equation (24) using linear weighting factor. 
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Comparing Figures 1 and 2, one can see that 

the initial part did not change much, however 

the amount of numerical “noise” has decreased 

significantly. Averaging the estimate across the 

records further decreases this noise and 

accounts for possible practical non-ergodicity: 

    
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where Nr is the total number of records, Ni the 

number of points in i-th record, Wi is a 

weighing factor of i-th record.  Figure 3 shows 

the estimate of the auto-covariance function 

averaged for 300 records. As expected, the 

“noise” is practically gone.  

 

Fig. 3: Averaged auto-covariance function, Equation (15). 

Estimation of Auto-Covariance for the Centered 

Squares  

The estimation of the auto-covariance function 

for the centered squares process is similar; first 

the weighted record estimate is calculated, then 

the population average is evaluated. 
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Figure 4 shows the population average for the 

auto-covariance of the centered squares, while 

Figure 5 contains the zoomed-in view of the 

first 200 seconds of the estimate. 

 

Fig. 4: Averaged auto-covariance function of the centered 

squares, Equation (27) 

The shape of the auto-covariance function of 

the centered squares is drastically different 

compared with the auto-covariance function of 

the original process. The folds are located 

mostly on the positive side and there is a 

negative “tail” slowly approaching zero. The 

appearance of the negative “tail” is not a result 

of numerical error, but a consequence of 

mostly positive folds; it comes from the known 

property of the auto-covariance function: 
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If the folds are mostly positive, the rest of the 

auto-covariance must be negative to bring the 

sum (27) to zero. 

 

Fig. 5: Averaged auto-covariance function of the centered 

squares, zoomed-in view 

Possible Scheme of Calculation of the Variance of 

Variance Estimate  

Since the large-amplitude roll response may be 

practically non-ergodic, it makes sense to use 

the ensemble/population estimate whenever 

possible. Thus the mean value estimate (15) 

should be calculated first to be used for further 

estimates. 

Then the centered squares are calculated: 

   2

,,
ˆ

ajiji mxy   (28) 

The mean value estimate for centered squares 

is the variance estimate for the original process 
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The auto-covariance of the centered squares is 

calculated with Equation (21) and averaged 

over the population: 
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Then the variance of the variance estimate for 

each record needs to be calculated. To decrease 

variability for larger time lags, it is proposed to 

remove the summands above the cutoff point 

M: 
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It is proposed to set the cutoff point M to half 

of the average number of points of a record. In 

any case, for the correct definition of the 

ensemble- averaged auto-covariance function 

of centered squares (26): 

  iNM min  (32) 

The final result is the variance of the variance 

estimate for the ensemble that is calculated 

with Equation (16). Once the variance of the 

variance estimate is calculated, the last step is 

the assessment of the confidence interval. Since 

the estimate is assumed to be distributed 

normally, the half-width of the confidence 

interval as expressed as: 

 )ˆ(ˆˆ
aa VraVV   (33) 

Where  is a coefficient dependent on the 

accepted confidence probability e.g: 

 96.1;95.0    

Figure 6 shows a comparison of three different 

ways to compute the ensemble/ population 

estimate of the variance with confidence 

interval.  

The “standard” Gaussian assumption 

overestimates uncertainty compared to the two 

other methods.  Equation (31) also shows a 

slight overestimation compare to the direct 

estimate (18). However, more calculations are 

needed to conclude that the observed 

differences are of general nature. 

 

 

Fig. 6: Comparison of different methods to compute confidence 

interval on the ensemble variance estimate. Equations in 

parentheses. 

CONCLUSIONS AND FUTURE WORK 

Contrary to popular opinion, the derivation of 

the formula for variance of the variance 

estimate is not bulky and is quite straight-

forward. The assumption of the Gaussian 

distribution of the process is actually not 

necessary, if one can estimate a covariance 

function of centered squares of the process. 

Direct estimation when the variance of each 

record is considered as a separate data point is 

similar to the formula of variance of the 

variance. The difference includes use of the 

population mean instead of the record mean for 

the centered squares. Applying a linear 

weighting function on the estimate of the auto-

covariance function helps to significantly 

reduce statistical “noise” caused by the 

decrease of available data in large time lags. 

The next logical step is to test these 

calculations.  This would include creating a 

large set of ensembles in order to see how well 

the computed confidence interval captures the 

expected number of ensemble estimates. The 

fraction of estimates falling with the 

confidence interval should be close to the given 

confidence probability. 
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19.4 

19.6 

19.8 

Direct 

estimate (18) 

Without Gaussian 

assumption (16 & 31) 

With Gaussian 

assumption, (16 &11) 

Ensemble /population estimate for variance of 

roll, 95% confidence probability, deg2 
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