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ABSTRACT  

The dynamic stability of warships is analyzed by evaluating the propension of the ships to 

overcome a prescribed rolling angle. One technique is the evaluation of the probability to reach that 

angle. If the dynamical behavior can reduced to a  time differential equation, Melnikov theory and 

the analysis of the integrity of attraction basin is also useful. In the present study, it is shown that all 

three techniques allows to class French warships in terms of their capsizability. 
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INTRODUCTION 

Capsizing probability evaluation is a tedious 

task involving numerous parameters and a 

rather long computational effort. Moreover the 

result of the computation is, but for comparison 

purposes, biased by an arbitrary choice of some 

of those parameters. Among those parameters 

the capsizing angle above which the ship is 

considered to capsize has not received a clear 

definition. Chosen constant in a previous work 

(Beaupuy et al., 2012) and equal to 45° as 

measured on one of the ships involved in the 

comparison, this parameter decreased 

drastically the operability of the other ships and 

thus biased the computed values of operability. 

In the present work we propose a presentation 

of two methods the goal of which is the 

classification of ships by risk level. The first 

section presents the method of operability 

previously introduced (Beaupuy et al., 2012) 

and, in the second section, a global technique. 

Then we focus on the estimation of the 

capsizing angle based on the global technique 

and then used to define more precisely the 

operability of each ship. 

OPERABILITY DEFINITION 

Operability, pop, can be defined as the 

probability for the ship to be operated safely 

from her launching to the end of her operative 

life. If pcap is the probability of capsizing 

determined for the same period, we can write: 

op capp 1 p   

To define the operability the following 

hypothesis are followed: 

 The ship is supposed to be operated in 

the Atlantic Ocean. She has an equal 

probability to be everywhere in the 

ocean. 
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 The sea state is mono directional. 

 Her headings are spread from 0 to 360 

with an equal probability. 

 Her speed is spread between 5 and her 

maximum speed with an equal 

probability. 

 Each simulation is realized for duration 

of 3600 s. 

 The limit roll angle for capsize is 

arbitrarily fixed at 45°. 

 Yaw DDL has been blocked to avoid 

broaching. 

For each run the successive maximum of roll 

angle are kept and post treated using a Weibull 

method proposed by (Derbanne, Leguen, 

Dupau, & Hamel, 2008) in order to define the 

capsize probability for particular conditions. In 

this method probabilities are applied to the roll 

angles and fitted by a Weibull law of 

probability. Extrapolation to the defined value 

of roll angle (45° in our case) allow the 

evaluation of capsize probability (green line). 

This process is illustrated on figure 1. 

 

Fig 1: Rough data and Weibull law of probability fitted on the 

data. 

For each run the ship speed is evaluated in 

waves and kept constant in mean by a slight 

variation of the rotational velocity of the shafts. 

This long and tedious procedure avoid bias 

effects that may impact the evaluation and the 

representation of capsizing risk as reported on 

polar plots of Figure 2. 

 

Fig 2: Polar plot of capsize probability (Hs = 4.5 m, Tp = 8 s, 

T = 3600 s). 

For the evaluation of long term probability, an 

atlas of sea state describing the relation Hs-Tp 

for North Atlantic has been used (US Coast 

Guards Table) and a Pierson-Moskovitz sea 

spectrum is assumed. The long term probability 

if then evaluated by: 

    
SS SS

Zi

T
T T

T
cap i i

i

P X,T 1 p X
 

   
 

 

Where i is the probability of occurrence of 

conditions i (issued from the atlas), TZi is 

period of zero up-crossing of the roll 

movement on the i
st
 condition, TSS is the 

characteristic duration of one sea state, 4 hours 

in our case, and T is the total duration of the 

probability estimation, 30 years in the present 

study. From these computations a general 

operability has been deduced both function of 

the operability on a specific sea state and of the 

probability of appearance of the sea state in the 

chosen atlas of waves. This value, presented in 

figure 3 for North Atlantic, is thus a function of 

the chosen atlas. 
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 Fig 3: Correlation between GZ area curva and operability. 

GLOBAL TECHNIQUE 

The dynamic stability of several warships is 

analyzed and compared according to their 

respective rolling dynamics due to beam seas. 

Mathematically the dynamical system reduces 

to a second order differential equation. The 

excitation is due to a regular wave. 

Nonlinearities are introduced in the restoring 

moment and a quadratic damping moment. 

Standard hydrostatic softwares provide the 

restoring moment. As a result this moment 

(Virgin, 1987), represented with a discrete 

function, is fitted with a high order 

polynomials. It appears that an eleventh order 

polynomials is high enough to cover the wide 

range of ships. The other coefficients of the 

differential equation follow from standard 

seakeeping codes: "in air" and added inertia, 

linear and quadratic damping coefficients and 

excitation moment. In the present analysis, all 

coefficients of the differential equation are 

constant.  

Among the methods that allow a global 

analysis of nonlinear dynamical system, 

Melnikov's method (Guckenheimer & Holmes, 

1983) is proposed to quantify the loss of 

stability by measuring the distance between 

stable and unstable orbits. This distance is 

known as Melnikov's function and its zeroes 

define the Melnikov's criterion. The latter 

provides an easy way to link all the coefficients 

which define the dynamical system, provided 

those coefficients are constant in time. 

The space of these coefficients (or parameters) 

can be hence separated in "safe" or "unsafe" 

areas and that separation follows from an 

analytical formula. Indeed the computation of 

that formula does not require a great amount of 

computational resources. For engineering 

purpose, as shown in Spyrou (Spyrou, 2011), 

such formula is of crucial interest since it 

allows to easily class ships with respect to pre-

defined criteria. However it is well known that 

Melnikov's criterion might be too conservative. 

For example, given the period of excitation, the 

predicted critical wave height above which the 

ship may capsize, is too small. Then it is an 

issue to correlate Melnikov's criterion with 

other approaches. One of those approaches is 

rather simple but might require tremendous 

computational resources if the implemented 

algorithms are not optimized. Here the 

technique which analyses the erosion of 

attraction basin (Thompson, 1990) is combined 

with an interpolated  Cell-to-Cell 

Mapping(Tongue & Gu, 1988). The illustrative 

results of such a method are the typical "Dover 

cliffs" plots, showing the area of the eroded 

basin plotted in terms of two arbitrary 

parameters among: the wave amplitude, the 

wave frequency, the damping coefficients, the 

polynomials coefficients of the restoring 

moment,... 

It is then observed that, in many situations, 

Melnikov's criterion follows the edge of the 

"Dover Cliff". However that depends on 

several conditions such that: 

 The type of selected items listed above, 

 The thresholds which define whether 

the computed orbits in the phase space 

escapes or not from the attraction basin. 

The typical differential equation which 

simulates the dynamics of the rolling motion 

reads: 

2 2

1 2 2 2

v v

I B B C 1 Q Af sin( )
    

           
    

(1) 

where single over dot and double over dots 

denote first and second derivative with respect 

to time  respectively. Polynomial Q(y) is non 
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dimensional. It never vanishes whatever the 

value of  and it reads 
N

2i

i
i 1

Q(y) 1 a y


   

so that the restoring force is represented with a 

polynomials of order 2N + 3. In the present 

study N = 4 and the highest polynomials is of 

order eleven. The solutions of time differential 

equation are separated in two categories: either 

bounded or unbounded. Indeed the present 

choice of polynomials lead to asymptotic 

infinite value of roll angle after the angle 

vanishing stability is reached. That is not 

physical but that essentially means that 

capsizing is a dramatic and not reversible 

event. That is why the word unbounded means 

that the rolling angle is greater than a threshold. 

In practice it suffices to set this threshold at (or 

close to) the angle of vanishing stability. 

Equation (1) is made non dimensional by 

introducing the following parameters 

v 21
1 2

v v

BBI f I
x , , a , b , b ,

C C I CCI


       
 

 

Hence yielding 

 2

1 2x b x b x x x 1 x Q(x) Aasin( )       (2) 

where from now on the over dots denote the 

derivatives with respect to  

It appears that equation (2) covers all the 

possible ships. Hence that makes it possible to 

compare them. Figure (4) shows the 

polynomials  2p(x) x 1 x Q(x)  for 8 of the 

studied warships. 

 

Fig 4: Variation of the restoring moment p(x) with the non 

dimensional rolling angle x. 

It should be noted that such variations could 

not be fitted with simple third or quintic order 

polynomials. The Hamiltonian of the 

unperturbed dynamical system follows from 

the sum of the kinetic energy 2

c

1
E x

2
 and 

potential energy  
x

2

p
0

E (x) 1 Q( ) d     . 

The heteroclinic orbits which links the two 

symmetric equilibrium points ( x 1, x 0   ) 

follow from the integration of the conservation 

law 

  

4
n

c p p
n 1

4

a1
E E E (1) 1 2

4a n 1 n 2

 
        

 

(3) 

Equation (3) is space integrated yielding the 

time variation of x and x , hence the boundaries 

of the unperturbed attraction basin, denoted S0. 

In practise the Melnikov function depends on  

the following two integrals 
k 1

kD x(t) dt, k 1,2



   (4) 

F( ) x(t)cos t dt



    

We end up with Melnikov criterion which 

reads 

2

1 1 2 2D uB D u B
A ,

F f F f
  (5) 

with 
4

I
F F

Ca

 
   

 

 and 4
v

Ca
u

I
   

where we isolate the critical amplitude A in 

terms of the dimensional parameters. This 

simple equation is of crucial interest for 

designers since it separates the space of 

parameters into "safe" and "unsafe" areas. It 

can be concluded that the smaller the function  

F, the safer the corresponding ship. In that 

direction, it is worth reminding that F() may 

vanish for an infinite set of frequencies  as 

soon as a1 ≠ 0 (Scolan, 1997). However in the 

present context that character is of little 

interest. In the three dimensional space of 
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parameters B1, B2, A, the higher the 

coefficients of (B1, B2) the higher the critical 

wave height and the safer the corresponding 

ship. Hence, we can compare or classify ships 

depending on the criterion (5). Figure 5 shows 

the classification of 9 warships by plotting their 

associated coefficients (D1, D2). It is worth 

noting that D1 and D2 can be easily calculated 

analytically. The former is exactly half the area 

of the undisturbed attraction basin 
2 1 1

1 p p1 0
D x(t) dt x dx 8 E (1) E (x) dx



 
     

 

The latter is the area below the potential energy 

curve, 

3 1 12

2 p p1 0
D x(t) dt x dx 4E (1) 4 E (x)dx



 
     

 

 
Fig 5: Coefficients (D1, D2) (see equation 4) for 9 warships of 

the French Navy. 

As it is done in (Bikdash, Balachandran, & 

Nayfeh, 1994), a parametrical analysis of Di in 

terms of ai would bring new insights into 

dynamical stability criteria. 

We perform a first parametric study in terms of 

the threshold of the Cell-to-Cell mapping. It is 

decided that the rolling motion is supposed to 

be critical above a threshold between 70% up 

120% of the vanishing stability angle v. Figure 

6 shows how fast the erosion occurs depending 

on that modified threshold. It is observed that 

above 100% of v, the erosion varies similarly 

with A. Below, the erosion occurs more and 

more abruptly. That can be correlated with the 

direct assessment of capsizing probability. 

 
Fig 6: Variation of the area of the attraction basin with the 

amplitude of the excitation wave for warship F70. The arrow 

corresponds to an increasing threshold from 70% up 120% of 

the angle of vanishing stability. 

The next parametric study confirms that 

Melnikov's criterion may be too conservative. 

Figures (7 a) shows the variation of the 

attraction basin area S(A,) with the wave 

amplitude A and the nondimensioned circular 

frequency  for three vessels: jda (Jeanne 

d'Arc), F70 and CMT. Indeed the 

superimposed curve which corresponds to the 

equation (5) linking A and  follows the edge 

of the "Dover cliff" at least for low frequencies.  

The rate at which erosion occurs is a feature 

which has been barely explored so far. In figure 

(7 b), shows the variations of the quantity S

; that is the modulus of the gradient of the 

function S(A, ). A criterion which can range 

the ship follows from the location of the 

maximum of S  in the parameter space (A, 

), i.e. the sea state. The previous classification 

of the ships regarding the location of the 

greatest rate of erosion relatively to the highest 

wave amplitude A, is hence confirmed. 
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Fig 7 a: variation of the area of the attraction basin S(A, ) 

made nondimensioned with S0. Melnikov's criterion is 

superimposed with a  green line. From top to bottom: CMT, 

F70, Jeanne d'Arc. 

 

 

 

Fig 7 b: isocontour of the gradient S  in the parameter 

space (A, ), horizontal and vertical axes espectively. From top 

to bottom: CMT, F70, Jeanne d'Arc. 

 

CONCLUSIONS 

Different conclusions can be drawn from this 

research: 

 The two methods based on completely 

different physical hypothesis lead to the same 

classification of the ships. The analytical 
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method prevails by its rapidity and the second 

one allows an evaluation of the capsize risk; 

 As far as the analytical method takes 

into account the ship characteristics and a 

periodic excitation we can infer that the two 

phenomena that control the probability of 

capsizing for frigates are the amplitude of 

excitation and the nonlinear behavior of the 

oscillator. The random character of the swell 

acts secondary; 

 The rate of erosion of the attraction 

basin gives an interesting insight in the 

importance of the choice of the angle of 

capsizing. From this observation a perspective 

work is the determination of the angle of 

capsizing that can be different for each ship in 

the database. This association of a angle of 

capsizing different for each ship is consistent 

with the well-known variation of this parameter 

from one ship to another. 
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