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ABSTRACT  

Development of the IMO second generation intact stability criteria requires applying a variety of 

mathematical models of ship motions in waves, from very simple cods for vulnerability criteria 

(mostly based on ordinary differential equations, or ODEs) to the state-of-the art advanced 

hydrodynamic codes for direct stability assessment. This paper describes an approach to 

mathematical modeling that stands between ODE and advanced codes. While retaining nonlinearity 

and inseparability of hydrostatic and Froude-Krylov forces, the “hybrid” model remains as simple 

as an ODE in all other aspects. The algorithm is based on 3-DOF (heave, roll, pitch) volume 

calculations. Calculation speed makes it attractive for validation of prediction methods for 

probability of stability failures. 
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INTRODUCTION 

Linearity of the equations of ship motions was 

essential for the frequency domain approach 

that opened the way to computation of ship 

motions in irregular waves (St Denis & 

Pierson, 1953). The assumption of linearity 

(i.e., small amplitude and wave slope) 

obviously limits application of the frequency 

domain approach. Assessment of dynamic 

stability in waves was one of those applications 

that required large-amplitude motions 

capabilities. 

Nonlinearity in equations of ship motions 

comes from different sources for different 

degrees of freedom. Nonlinearity of roll 

motions, with respect to dynamic stability 

concerns, mainly comes from hydrostatic and 

incident wave (Froude-Krylov) forces. Most 

ships have two stable equilibria in roll: upright 

and capsized. Transition from roll motion 

around the upright position to the capsized 

position is the total stability failure and is the 

ultimate goal of dynamic stability assessment. 

Thus, the simplest possible mathematical 

model for dynamic stability is an ordinary 

differential equation with several stable 

equilibria: 

 )()(2 2

0 tff E   (1) 

where  is roll angle,  is the linearized 

damping coefficient, 0 is the natural roll 

frequency, f() is the stiffness function (related 

to GZ curve in calm water), and fe(t) is the 

external forcing function. The latter actually is 

not limited by irregular wave excitation, but 

could come from, for example, an anchor-

handling operation. The only modeling 

requirement for capsizing is the existence of 

two stable equilibria in roll, separated by the 

unstable equilibrium, which is the angle of 

vanishing stability; see Figure 1. 
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Equation (1) is the usual model for studying 

dynamic stability; by using different 

approximations for stiffness, a number of 

nonlinear phenomena have been studied, such 

as fold and flip bifurcation, sub and ultra-

harmonic resonance, and so forth (e.g., Nayfeh 

& Khdeir 1986, Cardo et al. 1981). Adding a 

periodic change of stiffness to the model 

allowed parametric resonance to be modeled 

(Paulling & Rosenberg 1959).  

 

Fig. 1: The simplest model of capsize  

The theoretical background for these and 

similar work was the nonlinear oscillators 

summarized by Andronov et al. (1966). The 

appearance of nonlinear dynamics 

(Guckenheimer & Holms 1983) gave ship 

dynamics a new motivation; for an example, 

see Spyrou (1996).  

These works tremendously improved the 

understanding of nonlinear ship dynamics, but 

remained mostly qualitative. There is no strict 

way to derive Equation (1). Considering ship 

motions in waves, using potential flow 

assumption leads to the system of six integro-

differential equations, and only a linear 

assumption (small waves slope, small-

amplitude motions) will turn it into a system of 

ordinary differential equations. One would 

need some additional assumptions to reduce the 

problem to a single degree of freedom; then the 

nonlinearity is artificially reintroduced to arrive 

at Equation (1). The logic of these 

considerations was reproduced in Belenky & 

Sevastianov (2007). 

Meanwhile, improvements in computational 

capabilities and numerical hydrodynamics have 

led to development of numerical codes capable 

of reproducing ship motions with fewer 

assumptions; an example is the Large-

Amplitude Motion Program (LAMP) code, 

which is explained in Lin & Yue (1990) and 

Shin et al. (2003). A detailed review of the 

theoretical background of such codes from the 

hydromechanics point of view can be found in 

Beck & Reed (2001). 

The cost of using fewer assumptions is not 

small. Interpreting results from numerical 

simulation is difficult, as the terms in the 

equations of motions are not expressed as 

explicit functions. In particular, stiffness 

(hydrostatic) and excitation (Froude-Krylov) 

cannot be separated. Nevertheless, some tools 

of nonlinear dynamics are also applicable to 

integro-differential equations, in particular the 

continuation method, explained in Spyrou et al. 

(2009) and Spyrou & Tigkas (2011). 

Nevertheless, extending the methods of 

nonlinear dynamics to hydrodynamic codes 

seems to be the natural next step. 

THE CONCEPT OF A HYBRID MODEL 

Stability variation in irregular waves is a 

difficult problem for ordinary differential 

equation (ODE) - based models of large-

amplitude roll motions. When a wave is 

regular, its shape can be assumed sinusoidal; 

then the GZ curve for each position of the wave 

crest can be computed and used in nonlinear 

ODE as variable stiffness. Once it is 

approximated, the model can be treated 

numerically and analytically; for examples, see 

Sanchez & Nayfeh 1990, Bulian 2004, Spyrou 

2005, Rodriguez & Neves 2011, and others).  

The difficulties appear in irregular waves, 

when the shape of the wave is random. Indeed, 

a stability curve can also be characterized in 

irregular waves (Belenky & Weems 2007), but 

then its modeling within the ODE may be 

complex or require additional assumptions. 

Another way is to limit the consideration with 




. 



f() 
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GM and use a spectral representation 

(Dunwoody 1989a, 1989b). Grim’s effective 

wave (Grim 1961) is a popular technique; it 

involves substitution of the actual irregular 

wave with a sinusoidal wave with a length 

equal to the ship length and random height. 

Umeda et al. (1990) applies this approach to 

capsizing probability evaluation. 

Heave and pitch may have significant influence 

on stability variation when a ship is not in 

following or stern-quartering waves (Paulling 

2011). This circumstance was the immediate 

motivation for a “hybrid” model (Belenky et al. 

2011). Heave and pitch were calculated in time 

domain, and the ship’s attitude and position on 

the wave was used to evaluate stability in 

waves. These heave and pitch calculations were 

based on submerged volume only, while 

radiation and diffraction were included as 

coefficients. These simplifications are 

attractive from a regulatory standpoint, as the 

volume calculations can be easily verified.  

The next step in this direction is to include roll 

into volume calculations as well. Such a model, 

while still being simple, should be capable of 

describing nonlinearity caused by hydrostatic 

and Froude-Krylov forces on a consistent basis. 

The remainder of the paper is focused on this 

particular aspect.  

FORMULATION OF VOLUME-BASED 

CALCULATIONS  

The non-linear wave forcing and restoring 

forces can generally be computed by 

integrating the incident wave and hydrostatic 

pressure over the instantaneous wetted hull 

surface (in the Earth-fixed frame): 

 

(2) 

 where ∂0(x,y,z,t)/∂t is the pressure of the 

undisturbed incident wave field (Froude-

Krylov pressure) and SB(t) is the instantaneous 

wetted portion of the hull surface up to the 

incident wave waterline (x,y,t). The key 

element of this expression is that it captures the 

geometric non-linearities due to large vertical 

motion relative to the wave surface, ranging 

from the effect of bow flare to full emergence 

or submergence of the bow and stern. 

It should be noted that this expression can be 

used with linear or nonlinear incident wave 

models as long as the incident wave model 

expresses a pressure and velocity field in the 

body-nonlinear domain, that is up to z=(x,y,t).  

For the typical linear wave model – in which 

the wave is represented by a superposition of 

sinusoidal components – this can be 

accomplished by applying the Wheeler 

stretching technique, in which the exponential 

decay term in the expressions for pressure, 

velocity, and their derivatives is expressed as 

e
k(-z)

. 

The force calculation in Equation (2) is fairly 

straightforward, and many seakeeping codes, 

including LAMP, have a scheme that cuts off 

the 3-D geometry model at the instantaneous 

waterline, evaluates the incident wave and 

hydrostatic pressure over a set of hull panels or 

points, and numerically integrates the pressure 

over the wetted hull surface. While 

straightforward, this calculation can be 

expensive because it may require many 

evaluations of the incident wave function, and 

each wave evaluation may require many terms. 

The latter will be particularly true for very long 

irregular wave simulations, as a large number 

of wave components are required to provide a 

statistically independent realization of the 

seaway (Belenky & Sevastianov 2007).  

However, time-domain calculations using such 

schemes can generally still run faster or even 

much faster than real time and are often limited 

by other parts of the calculation such as the 

solution of the wave-body disturbance forces. 

However, for the analysis of the long-term 

characteristics of dynamic stability problems, it 

is desirable to have a capability that can 

capture the full body-linear restoring but which 

can run significantly faster than real time. To 

provide such a capability, a volume-based 

calculation scheme is considered, based on the 

submerged volume at each instant in time, and 

can be calculated with a minimal number of 
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evaluations of the incident wave. It is, 

however, imperative that the scheme capture 

the effect of the longitudinal variation of the 

relative motion, as this is a principle driver in 

dynamic stability phenomena such as 

parametric roll and pure loss of stability in 

waves. To do so, Equation (2) is expressed as 

the sum of incremental forces calculated on 

asset of incremental sections distributed along 

the ship’s length: 

 
(3) 

where δFFK+HS(xi,t) is force computed over an 

incremental submerged portion of the hull’s 

surface δSB(xi,t): 

 

(4) 

Note that the incremental hull surface δSB(xi,t) 

is considered to include both the wetted portion 

of the hull for that section as well as the 

“wetted” (below incident wave) portions of the 

planes separating this section from adjacent 

sections. 

Within each section, a Taylor expansion 

(neglecting higher-order derivative) can be 

used to approximate the distribution of the 

incident wave pressure over an incremental 

hull section in terms of the value and 

derivatives of the pressure at a nominal point 

(x0,y0,z0) on the section: 

 

(5) 

The dynamic free surface can be used to relate 

the Froude-Krylov pressure at the free surface 

to the incident wave elevation: 

 

(6) 

If the evaluation point is chosen to be on the 

incident wave surface, z0=, then Equation (5) 

can be written as: 

 

(7) 

Using an overbar to designate the mean or 

nominal value of the elevation, etc., for a 

section, the sectional force can be written: 

 

(8) 

Since the incremental surface δSB(xi,t) includes 

the plane separating adjacent sections, and the 

pressure over the free surface above the section 

will be zero, Gauss’s theorem can be applied to 

define the sectional force in terms of the 

integral of the gradient of the approximate 

pressure field of the incremental volume: 

 
(9) 

This results in a volume-based formula for the 

sectional incident wave and restoring force: 

 

(10) 
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(10) 

δV(xi,t) is the instantaneous volume of the 

submerged portion of the i
th

 section of the hull 

up to the incident wave surface. The first term 

is the familiar buoyancy term, but with the 

volume integrated up to the incident wave 

surface. The second and third terms are 

longitudinal and side forces from the gradient 

of the incident wave pressure field, evaluated 

in terms of the incident wave slope. The final 

term can be considered to be a “correction” to 

the buoyancy force, using a linear 

approximation of the exponential decay of the 

incident wave pressure field. 

Similarly, expressions for the moments can be 

derived by applying the relation: 

 
(11) 

This gives the following formula for the roll 

and pitch moments: 

 

 

(12) 

 

(13) 

xcv(xi,t), ycv(xi,t) and zcv(xi,t) are the coordinates 

of the center of the instantaneous submerged 

volume for the i
th

 section up to the incident 

wave waterline. 

With these formulae, the body-nonlinear 

Froude-Krylov and hydrostatic restoring forces 

can be computed with a minimum number of 

evaluations of the incident wave. The only 

major assumption in the derivation of these 

formulae is the Taylor series expansion of the 

incident wave pressure in Equation (5). This 

expansion assumes that the wave slope is 

constant over the beam and incremental length 

of each section and can be considered a long-

wavelength assumption in which the wave 

length is assumed to be long with respect to the 

beam and increment section length. This 

assumption should be quite reasonable for 

waves, or wave components in an irregular sea 

model, that are longer than two or three times 

the beam, but the linear approximation of the 

sinusoidal wave profile will become inaccurate 

for shorter waves. 

However, the section-based implementation 

considers the variation of elevation and slope 

from section to section, so the wave is not 

assumed to be long relative to ship length and 

the variation of relative motion along the length 

of the ship can be considered. 

The expansion also considers the vertical 

pressure gradient to be, at most, linear with 

depth, so the wave is also assumed to be long 

compared to the draft of the ship. The linear 

approximation of the exponential pressure 

decay will become quite inaccurate for shorter 

waves, so the implementation of ∂
2
0/∂z∂t must 

be very careful in the evaluation of short waves 

or wave components. 

IMPLEMENTATION OF VOLUME-BASED 

CALCULATIONS  

The implementation of the volume-based body-

nonlinear Froude-Krylov and hydrostatics force 

calculation requires the time-calculation of the 

sectional submerged volume and volume center 

beneath the incident wave. For application to 

extreme motion problems, these sectional 

volume calculations should accommodate large 

amplitude heave and pitch including fully 

submerged and emerged sections, and large 

amplitude roll motions including a fully 

inverted ship. For consistency and speed, the 

volume calculations can also be implemented 

using a single evaluation of the wave elevation 

and slope for each section.  

In the present calculation, the sectional volume 

calculations were implemented using a Bonjean 

curve-like approach in which a set of stations 

were cut through the hull and the volume and 
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volume moments were pre-computed up to 

each station offset point. At each time of a 

simulation (or heel angle of a restoring curve 

calculation), the Froude-Krylov and hydrostatic 

restoring force are computed with the 

following steps: 

1. Compute the incident wave elevation and 

slope at the centerline of each station. 

2. Find the intersection of the incident wave 

surface and the section centerline 

considering the wave elevation and vertical 

motion of the station due to the ship’s 

heave and pitch. 

3. Find the port and starboard waterline points 

from the incident wave/center intersection, 

lateral wave slope, and ship roll angle. 

4. Interpolate volume and volume moments 

from pre-computed Bonjean curves and 

correct for roll + wave slope. 

5. Compute section forces and moments via 

Equations (10), etc. 

6. Integrate force/moments along the length of 

the ship. 

Figure 2, which shows a midship station of the 

ONR Topsides Series Tumblehome hull, 

illustrates how the centerline/incident wave 

intersection point and an effect heel angle (roll 

angle + wave slope) are used to find the 

waterline points and compute the submerged 

volume and center of a station. 

 

Fig. 2: Station offsets and waterline intersection points 

Figure 3 shows the station offsets and the 

waterline intersection points of each station for 

a time instant from a simulation in stern 

oblique irregular waves.  

In the initial implementation of the volume-

based calculation, the ∂
2
0/∂z∂t term has not 

been included and the numerical studies have 

focused on wave lengths greater than twice the 

ship beam, with shorter waves being attenuated 

in the evaluation of the wave elevation and 

slope. Further work is required to explore the 

∂
2
0/∂z∂t term and to develop a robust and 

accurate handling for shorter waves and 

irregular wave representation, including short 

wave components. 

 

Fig. 3: Station/incident wave intersection points for ONR 

Tumblehome hull in stern oblique seas 

VERIFICATION VS. 3-D SURFACE 

PRESSURE INTEGRATION  

In order to verify the formulation and 

implementation of the sectional volume-based 

calculation, the roll restoring arm (GZ) curve 

was computed in both calm water and for the 

quasi-static wave-pass problem and compared 

to results from LAMP’s 3-D surface pressure 

integration.  Figure 4 compares the calm water 

restoring arm of the two calculations. 

 

Fig. 4: Calm water roll restoring arm (GZ) curve for ONR 

Tumblehome hull 

The volume-based Froude-Krylov and 

hydrostatic force calculation scheme has also 

been verified versus the conventional 3-D 



International Ship Stability Workshop 2013 

Proceedings of the 13th International Ship Stability Workshop, Brest 23-26 September 

   

7 

surface pressure integration approach for 

motion response predictions in regular and 

irregular waves. Figure 5 shows the roll 

response for a 3-DOF (heave, roll, pitch) 

simulation of a 100m x 20m x 6m rectangular 

barge in regular quartering waves with wave 

length equal to ship length. The roll responses 

are nearly identical, as were heave and pitch 

(not plotted). 

 

 

Fig. 5: Roll motion verification for rectangular barge in 

quartering regular seas, λ=LOA h=d/3  

SIMULATION SPEED 

In order to provide large volumes of realistic 

roll response data for characterizing extreme 

roll motion in irregular seas, a large series of 

time-domain 3-DOF (heave, roll, pitch) 

simulations have been made for the ONR 

Topsides Series Tumblehome hull in severe 

seas. In addition to the volume-based Froude-

Krylov and hydrostatic forces, these 

simulations incorporate pre-calculated added 

mass coefficients and linear and non-linear 

damping models.  

Figure 6 shows 20 records of the roll response 

for the ship at a low GM condition in large 

(Sea State 8) steep stern quartering waves. The 

seaway is modeled by 220 wave components to 

provide a statistically independent wave 

representation over each 30 minute realization. 

The total calculation time for these 20 

realizations was about 7 seconds on a single 

processor laptop computer. 

 

 

Fig. 6: Roll response of ONR Tumblehome hull in steep Sea 

State 8 

SUMMARY 

In order to provide simple, easily reproducible, 

robust, and very fast calculation of the body-

nonlinear Froude-Krylov and hydrostatic forces 

for a ship undergoing large motions in a 

seaway, a sectional, volume-based approach 

has been developed. The approach requires a 

single evaluation of the incident wave per 

station but captures the effects of large relative 

motion and the longitudinal variation of the 

stability in waves, which are principle drivers 

in dynamic stability phenomena such as 

parametric roll and pure loss of stability in 

waves.  The approach is nearly exact for waves 

which are long compared to the beam and draft, 

but care will need to be taken in its application 

to shorter waves or wave components. 
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