
International Ship Stability Workshop 2013 

Proceedings of the 13th International Ship Stability Workshop, Brest 23-26 September 

   

1 

On the Validation of Statistical Extrapolation for Stability Failure 

Rate 

Timothy C. Smith, 

David Taylor Model Basin (NSWCCD) 

Bradley L. Campbell, 

David Taylor Model Basin (NSWCCD) 

ABSTRACT  

Statistical extrapolation is a method to predict extreme, rare events from smaller, more common 

events. The validation of such methods requires a true value for comparison. Generation of that true 

value is quite difficult in itself. Due to the random nature of extreme, rare events, the comparison 

needs to account for the associated uncertainty. This paper examines the requirements for the true 

value, a methodology for generating acceptance criteria, and demonstrates that methodology with a 

numerical example. 
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INTRODUCTION 

Probabilistic theory is a very useful tool in 

the assessment of the dynamic stability of 

surface ships, especially for unconventional 

hull forms or modes of operation when 

previous experience is only partially applicable. 

The need for such a probabilistic assessment 

tool is well understood for both naval and 

commercial ships (Perrault et al, 2010, Alman, 

2011, Reed, 2011, Peters, et al, 2011). 

The development of probabilistic methods 

is a challenging task; the problem was first 

stated 50 years ago (Sevastianov, 1963. 

available in English 1994). Only recently did 

the practical solution come in view. The 

challenge comes from the physical nature of 

the problem; to evaluate a risk of stability 

failure, one needs to consider a rare event in 

the response of highly nonlinear dynamical 

system in a non-stationary random 

environment during the ship’s lifetime.  

The consideration of a stability failure as a 

Poisson event provides an explicit relationship 

between probability and time. It also provides a 

means for presenting the life-time probability 

as a series of short-term problems in a 

stationary random environment (Sevastianov 

1963, 1994). Further development included 

calculations of capsize probability during a 

voyage spanning several sea states (Boonstra et 

al 2004, Themelis & Spyrou, 2007).  

The evaluation of the short-term probability 

of a stability failure inevitably led to the 

extrapolation problem as both model test and 

advanced ship motion code cannot be run for 

sufficient time to observe those rare events in 

realistic conditions. Three approaches to 

extrapolation were identified in a state-of-the 

art review on the subject (Belenky, et al 2012).  

Prior to practical application of any of those 

methods, their validation is needed. The 

validation of general computational 

hydrodynamic tools is a well-established field; 
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see e.g. (AIAA, 1998, ASME 2009). However, 

the validation of numerical tools intended for 

dynamical stability assessments has a lot of 

important specific details not seen in general 

applications (Vassalos, et al, 1998, Reed 2008, 

2011). One aspect is the different physical 

mechanisms of stability failure that requires 

qualitative validation considered by Belknap, et 

al (2011, 2012). Another aspect of dynamic 

stability validation is statistical as the problem 

is considered in irregular waves (Smith, 2011, 

2012). 

Extrapolation tools needed for probabilistic 

assessment of dynamic stability, in principle, 

are independent of the simulation tools. That is 

why Peters, et al (2012) considered the 

validation of extrapolation tools as a separate 

problem. The general methodology of the 

validation of an extrapolation tool is the main 

focus of this paper. 

CONCEPT AND TERMINOLOGY 

A statistical extrapolation method uses the 

statistical properties of a data set to predict the 

probability of events that are too rare to be 

observed during a model test or reproduced by 

numerical simulation of reasonable duration. A 

common approach is fitting a Weibull or 

Rayleigh distribution to a data set. Both of 

these are forms of the General Extreme Value 

Theory (GEVT).  

Probability and time are related. 

Theoretically, if time is long enough (infinite) a 

rare event surely will occur (probability equals 

1). The usual way to relate time and probability 

is the Poisson assumption, i.e. considering the 

rare event to follow Poisson flow. Then the 

only parameter to find is the event rate λ i.e. 

probability of event per unit of time T, as the 

probability of at least one stability failure 

during time T is expressed as: 

 

)exp(1)( TTP   (1) 

The extrapolation methods being 

considered for dynamic stability are based on 

the Separation Principle (Belenky, at al 2012). 

They use intermediate thresholds that are low 

enough so their crossings can be observed and 

sufficient statistical data is available. 

A stability failure (partial or total) can 

usually be associated with the exceedance of a 

certain level of roll angle. Then the event rate  

in the Equation (1) becomes a crossing rate (or 

mean crossing rate). The extrapolated mean 

crossing rate is evaluated at various levels 

associated with stability failure - levels of 

interest.  

Validation requires a comparison between 

the extrapolated and true value. However, the 

true value generally is not available. Thus it has 

to be substituted by an estimate. This estimate 

must be evaluated by a commonly accepted 

method, such as direct counting. 

The direct counting is a procedure of 

statistical estimation of the mean crossing rate. 

It was studied in details in (Belenky & 

Campbell, 2011) and compared favourably 

with theoretical results available from 

upcrossing theory (Kramer & Leadbetter, 

1967). A brief description of this procedure is 

available later in the paper. 

The exposure time, or duration, is the 

length of the data set time history. Indeed with 

a very long exposure times, 100,000 or more 

hours, it is possible that the crossing of the 

level of interest may actually occur. When the 

exposure time is millions of hours, the direct 

counting answer approaches the actual true 

value and is used as a surrogate for “true value” 

for comparison. The actual true value is the 

direct counting answer for infinite time. 

A condition is defined as the combination 

of independent parameters that result in a 

unique set. Typically, a condition is the 

environmental parameters, speed and heading 

used to make the simulation of a particular 
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motion or acceleration, and the particular 

motion or acceleration. So a set of 

environmental parameters, speed and heading 

and three motions (or combination of motions 

and accelerations) would be three conditions 

due to the three motions. Thus, condition can 

be defined as a deterministic vector: 

 dxSmS iVTHS ,,,, 


 (2) 

where HS is a significant wave height, Tm 

modal frequency, VS, forward speed, - 

heading, idx –motion index (say, idx=4 

corresponds to roll). 

A validation comparison is made for each 

condition. First the “true” value is to be 

estimated from a large data set (we discuss its 

generation later in the paper). The true-value 

validation set is defined as 
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Where NC is the number of stability failures 

associated with crossing of the level of interest; 

NST is the number of events considered to be 

statistically significant; and T̂ is the “true” 

value substituted by its estimate with 

confidence interval  T

up

T

low  ;  with the 

confidence probability P. Then a subset is 

used as the data set for extrapolation and the 

result of extrapolation is compared with the 

true value.  
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where superscript E stands for the extrapolated 

estimate. As the simulations produce a random 

process, multiple extrapolations NEX should be 

made for each condition to account for that 

randomness. 

EXi NiSU ,...1:)( 


 (5) 

VALIDATION TECHNOLOGY 

As it was stated above the extrapolation 

method is considered valid if, a probability 

(rate of events) of large excursion, for example 

exceedances of 50 degrees of roll, can be 

predicted from the time series that does not 

contain such events.  

As such, the validation data set representing 

the true value for comparison simply needs to 

have stability failures in statistically 

representative quantity. The actual duration of 

the validation data set is immaterial; the 

validation data set merely provides a mean 

crossing rate for comparison. It is possible to 

generate the validation data set as a long 

duration data set with an expected large event 

rarity using typical conditions or as a shorter 

duration data set with more frequent large 

events in an artificially severe condition. 

For a true-value validation data set to 

represent realistic rarity of a stability failure in 

a storm a long duration is on the order of 

millions of hours and short duration is on the 

order of 100,000 - 500,000 hours full scale. In 

this case, long and short duration are relative 

considering most simulations are on the order 

of a half hour to three hours full scale. 

Experimental data for such long durations is 

impractical. High fidelity simulations are 

similarly impractical. There is a need for a 

simulation tool that is computationally fast and 

contains enough of the physics to be 

representative of the higher fidelity simulations. 

For statistically extrapolating the ship 

motions used in this study, a fully coupled 3 

degree of freedom simulation tool, based on 

volume calculation was used (Weems & 

Wundrow, 2013). It is a simple time domain, 

strip theory simulation using body exact 

hydrostatics and Froude-Krylov forces. The 

radiation and diffraction coefficients are 

considered constant. The exponential pressure 

decay of the Froude-Krylov forces is ignored. 

The ship is free to heave, roll, and pitch. The 
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ship is considered on constant speed and 

heading with respect to the waves. The motions 

tend to be larger than higher fidelity simulation 

tools because there is no decay of wave energy 

and the reduced degrees of freedom include 

energy that would ordinarily be shed to the 

restrained degrees of freedom. For instance, 

roll tends to be higher with 3DOF models than 

6DOF models as wave energy that would 

appear as sway and yaw motion can only be 

accounted for as more roll. However, all these 

simplifications lead to calculation efficiency 

sufficient to reproduce true-value validation 

data set of long duration. 

The term “data reduction factor” (DRF) was 

introduced in (Belenky & Campbell 2011) to 

measure efficiency of an extrapolation method. 

The data reduction factor is simply the inverse 

of the mean crossing rate of the largest level of 

interest satisfactorily extrapolated divided by 

the duration used to make the extrapolation. 

The key is it depends on the mean crossing rate 

of the largest acceptable level of interest not 

the duration of true value validation data set. 

Also, DRF depends upon the data sets used and 

acceptance criteria. Thus, DRF cannot provide 

a universal answer as to how much exposure 

time is required for validation. 

ACCEPTANCE CRITERIA 

Acceptance criteria should reflect the 

Specific Intended Uses (SIU) of the 

extrapolation. In this case, the SIU could be 

relatively simple and general – determine the 

mean crossing rate (the upper boundary of 

confidence interval is often used in practical 

cases) at a specified level of interest based on 

specified exposure time for a given motion or 

acceleration, speed, heading and environmental 

conditions. This leads to two approaches:  

treating each level of interest independently or 

treating the entire extrapolation over multiple 

levels of interest as a unit. These two 

approaches have common elements:  

acceptable difference between mean crossing 

rates, percentage of passing extrapolations, and 

overall acceptance. This paper only addresses 

the first approach as the most straightforward, 

treating each level of interest independently. 

Acceptance also depends on the data set 

used to make the extrapolation. As a result, 

multiple extrapolations from multiple data sets, 

NX=100 or more, should be used to evaluate 

acceptance. 

Following the multi-tier approach from 

Smith (2012) and considering levels of interest 

independently, a comparison at a single level of 

interest would be parameter; multiple levels of 

interest would be conditions; and multiple 

extrapolations for different data sets would be 

the overall or set tier. The use of multiple 

extrapolations is specified in the first tier. 

At a single level of interest, the 

extrapolation would be compared to the “true 

value” at that level of interest. The comparison 

could be made based on confidence interval 

overlap, a more rigorous statistical test (Smith, 

2011), or even simply the distance between 

mean crossing rates.  For the confidence 

interval overlap, one can consider a random 

variable x: 
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where j is the j-th level of interest with 

symbolic logic notation. 

Specifying an allowable distance between 

mean crossing rates requires knowing the effect 

of the distance on the final use of the 

extrapolation. A sensitivity study on the final 

use of the extrapolation can help set these 

values. Also, the allowable distance should not 

be less than the “true value” uncertainty (where 

the “true value” uncertainty is that due to 

random process error). Using an allowable 

distance less than this could conceivably not 
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accept another realization of the “true value.”  

This is indicative of overly strict acceptance 

criteria. 

With multiple extrapolations, the 

percentage of passing extrapolations needs to 

be specified to pass a level of interest. Even 

with multiple extrapolations, this is still a 

random process dependent on the data sets: 

    

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EXN

i
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1
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Equation (7) represents the tier 1 criterion, 

as it reflects how good the extrapolation is. If 

the extrapolation method is ideal and it always 

recovers the true value, the criterion C1 will 

equal 1. Real-world extrapolation methods may 

miss the true value just because they use 

statistical estimates that are random variables. 

Thus the acceptance condition is formulated as: 

   1,,1 BSPC j 


 (9) 

where B1 is a boundary (or standard) for the 

acceptance at the tier 1.  

The boundary, B1, needs to be set a level 

the accounts for the uncertainty. For 

extrapolations carried out with the confidence 

interval P, it is not reasonable to set B1 to be 

more than P. Otherwise, the acceptance may 

not be reached purely because of natural 

statistical uncertainty of the random variable x, 

that has nothing to do with validity of the 

extrapolation method, so 

  PB1  (10) 

However, statistical uncertainty is not the 

only imperfection of an extrapolation method 

intended for nonlinear dynamical system under 

random excitation. Inevitably other 

assumptions are made. Some of them may be 

related to use of limit distributions, like 

Weibull for extreme values or even normal for 

estimates. Then the result becomes dependent 

on how quickly the actual distribution 

converges to its limit, which is not always 

known. Other assumptions may involve 

dynamics; such as a response to wave group 

made out of sinusoidal waves represents the 

response to a real-world wave group. Thus, it 

makes sense to set the standard lower than the 

confidence probability, for example: 

 95.09.01  PifB  (11) 

The averaging in Equation (7) also brings 

additional statistical uncertainty that can be 

dealt with by calculation of confidence interval 

for the estimate of C1. This can be done using 

the binomial distribution for the number of 

extrapolations, as equation (6) can be 

considered as a Bernoulli trial: 
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Where QB is the quantile function or inverse of 

binomial cumulative distribution function 

(CDF) for NEX Bernoulli trials with the 

parameter p: 

  jSPCp   ,,1


 (13) 

For example, for 100 data sets with 90% 

probability and taking the 95% confidence, the 

lower quantile is 84, or 84%. B1 needs to be 

adjusted in a similar fashion. Finally the tier 1 

acceptance condition is written as: 

   1,,1 BSPC jlow 


 (14) 

The second tier of the acceptance criteria is 

the number of levels of interest that need to 

pass for acceptance. Using a single level of 

interest is certainly simplest but allows for an 

extrapolation be unacceptable at all other levels 

of interest and still be acceptable. However, 

using all the levels of interest may give to 

much weight to levels of interest that are 

unimportant.  



International Ship Stability Workshop 2013 

Proceedings of the 13th International Ship Stability Workshop, Brest 23-26 September 

   

6 

With multiple levels of interest, it is also 

necessary to specify how they are to be 

consolidated to a single metric and acceptance 

value. The straightforward approach is 

specifying an average passing value, minimum 

passing value, or percentage of passing level of 

interest in the range of NLVL levels of interest, 

making the second tier criterion C2 and the 

acceptance condition with the standard B2: 

    
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   2,2 BSPC 


 (16) 

For instance, this can be stated for multiple 

extrapolations and a range of level of interest, 

the average passing rate from tier 1 needs to be 

above 90% (i.e. B2=0.9). This value should not 

be set so high as to overly constrain the 

acceptance criteria (Smith, 2012). 

The third tier, overall acceptance, deals 

with how many conditions need to pass for 

overall acceptance of an extrapolation method: 
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 (17) 

To increase confidence in the extrapolation 

method more than one condition should be 

examined, so the average passing rate should 

not be less than B3 

   33 BPC   (18) 

Interestingly, the actual environmental 

conditions used do not matter as many different 

environmental conditions will produce similar 

levels of rarity (order of magnitude for the rate 

of failures). The key is that the extrapolation 

method is valid for a wide range of rarities or 

low probability tail behaviours. So the 

acceptance criteria need to specify simulations 

that cover the different tail behaviours rather 

than operational conditions. There may be a 

correlation between tail behaviours and 

operational conditions but that is not 

guaranteed. Thus, all conditions or cases would 

be required to pass for overall acceptance as 

the total number of cases can be relatively 

small. 

NUMERICAL EXAMPLE 

The following Numerical example shows 

some elements of validation of extrapolation 

method using EPOT (Envelope Peak over 

Threshold, see Belenky & Campbell 2011) as 

an example. EPOT is based on known Peak 

over Threshold method (see e.g. Coles, 2001) 

using a peak envelope to control clustering. 

EPOT requires relatively large amount of data, 

but, in principle, can work with any data source, 

including model test or full-scale trials.  

The “True-value” Estimate 

The true-value validation set was produced 

with the fast volume based calculation (Weems 

& Wundrow, 2013). The sample ship was ONR 

tumblehome top configuration (Bishop, et al 

2005). Parameters of the simulations are given 

in Table 1 

Table 1:  Condition parameters used to generate “true 

value” data set. 

Parameter value 

Significant wave height, m 9.5 

Modal period, s 15 

Heading, deg 45 

Speed, kn 6 

Total duration, hrs 10
6
  

Duration of one record, min 30 

The “true” value was estimated as follows. 

A data set is represented with NR records of roll 

time history, each of which contains Nt data 

points with time step t. The mean crossing 

rate is estimated as: 

 
tNN

N

Rt

C


̂  (19) 

where NC is the total number of observed 

upcrossings of the given level. To apply the 
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assumption of Poisson flow, the upcrossing 

events must be independent. As a result the 

number of crossings has binomial distribution 

with parameter p estimated as:  

 
Rt

C

NN

N
p ˆ  (20) 

The difference between two estimates is 

just the time step, i.e. a constant coefficient, 

thus the estimate of mean crossing rate also has 

a binomial distribution. 

In principle, binomial distribution can be 

used to evaluate the uncertainty of the estimate 

(19); however, there may be numerical 

difficulties with calculation of the quantile of 

the binomial distribution. Thus, a normal 

distribution can be used instead, with the 

variance calculated as: 

 )ˆ1(ˆ
1

)ˆ(ˆ
2

pp
tNN

raV
Rt




  (21) 

Figure 1 shows the estimates of mean 

crossing rate to be used as “true-values.” The 

mean crossing rate decreases as the level 

increases, reflecting the rarity of large roll 

events. The confidence interval also increases 

as the number of events decreases. This also 

illustrates that the “true value” is really just an 

estimate of the actual true value. Interestingly, 

there is a definite knee in the curve around 30 

degrees of roll. This reflects both the non-linear 

righting arm curve for the ONR tumblehome 

hull form and a change in response from 

resonant rolling to loss of stability. The 

extrapolation should be able to predict motions 

below the knee from data above the knee to be 

of practical use. 

Validation for One Condition 

The validation was carried out by 

evaluating a single level of interest and a single 

condition, tiers 1 and 2 respectively, using 10 

extrapolations. Tier 3 is redundant to tier 2 as 

there is only one condition. Each extrapolation 

was based on 100 hours of simulation. 

 

 

Fig. 1: The “true” values estimates of mean crossing rate 

(1/sec) by roll angle level (deg) 

Tier 1 of the acceptance criteria specifies 

what is required to accept a single level of 

interest. In this case, that is the method of 

comparison and what percentage of the 

multiple extrapolations needs to be acceptable 

to consider that level of interest acceptable. 

The method of comparison is confidence 

interval overlap. If the confidence intervals of 

the “true value” and extrapolation overlap, the 

extrapolation is considered to be the same as 

the “true value.”  

The percentage needed to be acceptable is 

taken as the lower binomial 95% quantile for 

10 trials of overlapping a 95% confidence 

interval. This value is 8 of 10 or 80%. 

Tier 2 defines the number of levels of 

interest to consider how they are consolidated, 

and an acceptance metric. In this case, only a 

single level of interest, 50 degrees of roll, was 

considered. The levels of interest will be 

0 20 40 60 80 

10-3 

10-4 

10-5 

10-6 

10-7 

10-8 

10-9 

10-10 

10-11 , deg 

, 1/s 



International Ship Stability Workshop 2013 

Proceedings of the 13th International Ship Stability Workshop, Brest 23-26 September 

   

8 

consolidated using the minimum passing 

percentage set the same as the tier 1 passing 

percentage, 80%. The use of a single level of 

interest makes for a simple case, though the 

application to multiple levels of interest is 

straightforward. 

Figure 2 shows the 10 extrapolations with 

confidence intervals compared to the “true 

value” evaluated at 50 degrees of roll. All 10 

extrapolations overlap the “true value,” 

denoted by the horizontal line. As 10 is greater 

than or equal 8 (the passing value) this level of 

interest is considered acceptable at tier 1. 

 

Fig. 2: Results of validation using 10 extrapolations. The level 

of interest 50 degrees 

Proceeding to tier 2, there is a single level 

of interest with a 100% pass rate. The pass rate, 

100%, is greater or equal to the minimum value, 

80%. This passes tier 2; this condition has an 

acceptable extrapolation. 

With only one condition, which passed, 

tier 3 is passed automatically. With more 

conditions, there would be a passing condition 

percentage to exceed. 

FUTURE WORK 

This paper only covered one acceptance 

criteria approach in a limited fashion. To 

further understand the acceptance criteria, more 

extrapolations, more levels of interest, and 

more conditions need to be considered. Other 

approaches to formulating the acceptance 

criteria tiers or making comparisons should be 

examined to assess the acceptance criteria’s 

applicability for general use. 

Student’s t- Test 

The Student's t-test could be used to 

compare mean crossing rate values, rather than 

confidence interval overlap. The Student's t-test 

requires a mean, a variance, and the number of 

independent data points for the extrapolation 

and the direct counting answer. These values 

for the direct counting answer are easily 

obtained assuming a binomial distribution and 

using the number of peaks at the level of 

interest as the number of independent degrees 

of freedom. For the extrapolation, the mean is 

the mean crossing rate, the variance can be 

determined from the confidence interval. The 

number of independent degrees of freedom is 

the mean crossing rate multiplied by the 

duration used for the “true value” 

approximation. 

CONCLUSIONS 

This paper discusses validation of statistical 

extrapolation tools by providing a numerical 

example using the EPOT extrapolation method. 

This example reiterates a three tier approach to 

formulating acceptance criteria and specifies 

the required elements to have a complete 

acceptance criteria definition. The numerical 

example also included the method to determine 

a “true value” estimate with confidence 

interval. This indicated the need for 

computationally fast, reduced order simulation 

to generate the needed data set. The numerical 

example showed EPOT was able to predict 50 

degrees of roll using 100 hour extrapolations. 
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