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ABSTRACT  

The paper describes the numerical implementation of the Split-Time method with a full account of 

stability variation in waves. Split-Time method gathers data on the difference between the 

instantaneous and critical roll rate at the instant of upcrossing of the intermediate threshold. This 

data appears to be a good metric for predicting capsizing and can be extrapolated with an 

exponential distribution. The paper also looks into the meaning of a perturbation of the roll rate at 

the instant of upcrossing, showing its relation with classic definition of ship stability and the general 

definition of motion stability of a dynamical system. 
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INTRODUCTION 

The idea of the split-time method is to separate 

the very complex problem of predicting the 

probability of capsizing in irregular waves into 

two simpler problems: non-rare and rare. The 

non-rare problem is an upcrossing of an 

intermediate threshold, while the rare problem 

focuses on the conditions at the instant of 

upcrossing that would lead to capsizing or a 

large angle of roll. The non-rare problem is 

meant to be solved through the direct statistical 

processing of time-domain motion data so the 

intermediate threshold is expected to be low 

enough that upcrossing statistics may be 

evaluated directly. The rare problem is solved 

by perturbing the roll rate at the instant of 

upcrossing in order to find the value that leads 

to the specified stability failure. The general 

scheme is illustrated in Figure 1, the inset 

shows the perturbations. 

A comprehensive overview of the development 

of the method has been recently published by 

authors (Belenky, et al. 2012); the results 

described in this paper may be seen as a direct 

continuation of the cited paper. 

 

Fig. 1 Concept of Split-Time Method (Belenky, et al. 2012) 

PROBABILITY OF CAPSIZING 

With the separation of the problem described 

above, the probability of capsizing during time 

T is expressed as 

  TPTP C exp1)(  (1) 

 is upcrossing rate through the intermediate 

threshold (non-rare problem) and PC is a 

probability of capsizing after the threshold has 

been crossed (rare problem). As the 

intermediate threshold is set low enough to 

observe upcrossings, the non-rare problem does 
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not present a great challenge and most of the 

focus is on the rare problem. 

Capsizing after upcrossing is associated with 

an exceedance of a critical roll rate by the roll 

rate at upcrossing, where the critical roll rate is 

defined as the minimum roll rate at upcrossing 

which leads to capsize. In principle, the critical 

roll rate )(tcr  can be defined at any instant of 

time, so the difference between the 

instantaneous and critical roll rates defines a 

process: 

 )()()( ttty cr    (2) 

Where  is an instantaneous roll angle and the 

dot above the symbol stands for temporal 

derivative. The probability of capsizing after 

upcrossing is expressed as: 

 




0

)( dyyfP cC  (3) 

The probability density distribution fc refers to 

the values of the process y(t) taken at the 

instant when the process (t) up-crosses the 

intermediate threshold m0. The distribution of 

the process y at upcrossing can be expressed as 

(Belenky et al. 2011): 
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The evaluation of the integral (4) numerically 

represents significant difficulties as it would 

require fitting a joint distribution of roll and the 

instantaneous and critical roll rates. The fact 

that roll angles and rates are not correlated does 

not provide any noticeable simplification, as 

for non-Gaussian processes the absence of 

correlation may not mean independence. In 

particular, the dependence of roll and roll rate 

may be significant in stern quartering seas 

(Belenky, et al. 2012). 

To avoid these numerical difficulties, the 

critical roll rate should be calculated at the 

instant of upcrossing only. Thus, only the 

distribution fc(yc) needs to be modeled. 

PERTURBATION AND DEFINITION OF 

STABILITY  

The critical roll rate is calculated by repeating 

the numerical integration of the equations of 

motion starting from the instant of upcrossing. 

The roll rate at upcrossing is perturbed and 

used as part of the initial conditions while all 

other initial conditions remain the same. 

The numerical procedure is expected to be used 

with an advanced hydrodynamic code and be 

code-independent. The only requirement is 

restart capability. For numerical codes that 

model ship motions using integro-differential 

equations with hydrodynamic memory effects, 

the complete potential solution must be saved 

at the instant of upcrossing. However, simpler 

models without memory effects can be used for 

the development of the procedure; provided 

that they capture the stability variation in 

waves, which is essential for modeling 

phenomena such as pure loss of stability.  

Weems & Wundrow (2013) describe a 3-DOF 

hybrid model that uses a volume-based 

calculation for the nonlinear Froude-Krylov 

and hydrostatic forces. Diffraction and 

radiation are modeled with coefficients, so 

there are no hydrodynamic memory terms, but 

the inseparability of excitation and restoring 

are included. Thus, this model is “half-way” 

between a hydrodynamic code and a dynamical 

system described with ordinary differential 

equations (ODEs).  

Sample calculations were performed for ONR 

Topsides Series tumblehome configuration 

(Bishop et al. 2005) at zero-speed in stern-

quartering long-crested seas, modeled using a 

Bretschneider spectrum with a significant wave 

height of 11.5 m and modal period of 14 s.  

Figure 2 shows the final three iterations for the 

calculation of the critical roll rate at one time 

instant of upcrossing. It is important to note 

that all of the perturbed solutions with an initial 

roll rate below critical converge to the 

unperturbed solution. 

One may pose the question of why the 

perturbations are applied only to roll rate, while 

ship motions are modeled with three degrees of 
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freedom (heave, roll and pitch). According to 

d’Alembert’s principle (see, e.g., Synge & 

Griffith 1959 or McCuskey 1962), the sum of 

the differences between the total forces acting 

on a system of mass particles and the time 

derivative of the momentum of the system is 

zero along any virtual displacement: 

   0
i

iiii m rwF  (5) 

Here i is the index of a particle of the system, 

Fi is the total force on the particle (excluding 

constraints), mi is the mass of the particle, wi is 

the acceleration of the particle, and ri is the 

virtual displacement of the i-th particle, 

consistent with constraints.  In particular, for a 

rigid body, d’Alembert’s principle allows 

interpretation of a dynamical problem as a 

static problem by including inertial forces in 

the equations of equilibrium. Thus, at every 

time instant, a ship may be considered in a 

dynamical equilibrium if inertia forces are 

included.  

 

Fig. 2: Final iterations of calculation of critical roll rate 

Euler (1749) defined a stable ship as “being 

inclined by external forces returning back to its 

original position, once the forces ceased to 

exist.” A perturbation on roll rate can be 

considered as the application of a force for a 

very short time, and stability can be claimed if 

the ship subsequently returns to its original 

equilibrium, which in this context means the 

original, unperturbed time history. 

At the same time, response of a dynamical 

system is defined as (asymptotically) stable if, 

after a perturbation, the perturbed response 

tends to the unperturbed response.  

Thus, both Euler’s definition and the general 

definition of motion stability are equivalent and 

consistent with the perturbation approach and 

critical roll rate represents a stability boundary 

at the given instant of time  

RARE PROBLEM  

General Approach 

The essence of the rare problem is modeling 

the distribution of the difference between the 

critical and the instantaneous roll rate yc at the 

instant of upcrossing. A histogram of this value 

is shown in Figure 3 based on upcrossing data 

from 20 records, each of half-hour duration. 

The upcrossing threshold was set to 13 degrees, 

which provides a sample with NY=207 data 

points. There were no capsizings observed 

during this particular dataset, so all the 

available data points are positive. 

 

Fig. 3: Histogram of the difference between the critical and the 

instantaneous roll rate yc at the instant of upcrossing. 

Actually, the modeling of the entire 

distribution of yc is not necessary to be able to 

calculate probability of capsizing after 

upcrossing; only the tail of the distribution is 

needed. There is a proof (Leadbetter et al. 

1983, see also Coles 2001) that the tail (i.e. the 

part of the distribution beyond a certain value 

a) can be approximated with generalized Pareto 

distribution (GPD): 
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Where k is a shape parameter, while  and  

are scale parameters. 
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Properties of the Tail 

It can be seen from (6) that the exponential 

distribution is a particular case of GPD. It is 

possible to show that the distribution (4) 

actually has an exponential tail when used with 

the closed-form expression available for a 

piecewise linear system (Belenky et al. 2012): 
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where fxy is the joint normal distribution of the 

“carrier” process x and the difference between 

the critical and instantaneous roll rates y. The 

carrier process x(t) is defined as: 

 0)()()( mm tttx   (8) 

Were m(t) is a random component of 

maximum of the piecewise linear stiffness, 

while m0 is its mean value corresponding to 

“calm water” case. The derivative of the carrier 

process is identified with the symbol d(t). The 

symbols md|xy  and d|xy are the conditional 

mean value and conditional standard deviation 

of the derivative of the carrier process 

evaluated for particular values of the processes 

x and y, based on normality of all three 

processes: x(t), y(t) and d(t): 
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 with a subscript stands for standard deviation 

of the corresponding process while r with two 

subscripts stands for a correlation coefficient 

for these two processes; my is a mean value of 

the process of differences between the 

instantaneous and critical roll rate taken at any 

time instant (which is different from the time 

instant of upcrossing). 

Finally x(m0) is the upcrossing rate for the 

carrier process over the level of m0.  

The error function erf is defined here as: 
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Formula (7) is a product of normal distribution 

fxy and the following expression: 
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The mean value of the process y(t) (calculated 

at any point) must be a positive value, in 

particular it equals 0.396 in the example 

considered in (Belenky et al. 2011). That 

means that the negative values of yc are 

relatively far from the mean value and formula 

(12) is dominated by the linear function (9); 

this gives the distribution (7) its negative skew, 

see Figure 4. All numerical parameters are 

taken from (Belenky et al. 2011). That means 

that the negative tail distribution (7) is made up 

of the tail of the normal distribution and a 

linear function with negative slope. Indeed, the 

tail is exponential. 

 
Fig. 4: Theoretical distribution of the difference between 

instantaneous and critical roll rate at the instant of upcrossing 
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Fitting Exponential Tail 

Prior to fitting the exponential tail to the 

sample of differences between critical and 

instantaneous roll rates taken at the instant of 

upcrossing, it is convenient to convert the data 

to positive skew and tail: 

 
)max( c

cc

yLf

yLfu




 (13) 

The probability of capsize after upcrossing is: 

 
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
Lf

ccC duufP )(  (14) 

The next step is to find where the tail starts, 

which is the value a in formula (6). Following 

the procedure described in Coles (2001), a 

series of thresholds for uc are introduced.  For 

this numerical example, 12 thresholds are 

chosen to have 10 points above the highest 

threshold and 30 points below the lowest 

threshold. Fitting the tail means calculating 

parameter  in formula (6). It is carried out 

with the method of maximum likelihood 

estimation (MLE). The log likelihood function 

is expressed as: 
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Where the f is the exponential distribution with 

the parameter ; N(a) is the number of data 

points ui above the threshold a. The ^ or “hat” 

symbol above the symbol means “estimate”. 

The maximum likelihood estimate for the 

parameter l is computed from the condition: 
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This leads to the following expression for the 

estimate of the parameter, which is a function 

of the threshold a. 
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mu(a) is the mean value of the data above the 

threshold a. 

As any other estimator, the parameter in (17) is 

a random variable and has to come with a 

confidence interval. Since the number of data 

points is rather large, it seems to be logical to 

assume normal distribution; thus the mean 

value and the variance of the estimate need to 

be found. 

Formula (17) can be interpreted as the 

deterministic function of the random argument 

of the mean value of the data points: 

 1ˆ)ˆ(ˆ  uu mmg  (18) 

As any other function, it can be expanded into 

a Taylor series in the neighbourhood of the 

mean value of the estimate; only the first order 

terms are kept: 

  uxuux mmmgmgmg ˆ)ˆ()ˆ()(   (19) 

The function (19) is a linear function of the 

random argument; it is the mean value estimate 

of the data above the threshold. The mean 

value and the variance of the argument are 

known: 
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Here Vu(a) is the variance of the data points 

above the threshold a. Since an exponential 

distribution is assumed, the variance is equal to 

the square of the mean value: 

  2)(ˆ)(ˆ amaV uu   (21) 

The mean value and the variance of the linear 

function (19) can then be expressed as: 
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 (22) 

Figure 5 shows these estimates with 95% 

confidence interval as a function of the 

thresholds. This plot allows the threshold 

where tail starts to be found. Since equation (6) 

is a good approximation of the tail, once it is 

legitimate it does not depend where the 

threshold is set. That mean that once the tail 

starts, the parameter estimates are statistically 

identical and a horizontal line plotted from the 

lowest “eligible” threshold will cross through 

the confidence intervals of all thresholds above 
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it. According to Figure 6, the tail starts around 

a=0.25 rad/s with N(a)=101 data points 

remaining above the threshold. Figure 6 shows 

a histogram of the data above that threshold 

and the fitted exponential tail (please note the 

change of the bin size of the histograms in 

Figures 3 and 6 due to change in the volume of 

data and its variance). 

 

Fig. 5: Parameters of the exponential fit of the tail 

 

Fig. 6: Exponential fit for the tail 

Probability of Capsizing after Upcrossing 

Once the tail has been fit, the estimation of the 

conditional probability of exceeding the level 

Lf, associated with stability failure, is 

straightforward: 
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Calculation of confidence of interval of the 

estimate (23) is easy; the distribution of the 

estimate of the parameter  was assumed 

normal and its variance is already known, see 

equation (22). Taking a logarithm from both 

parts of equation (23) leads to: 

   )(ˆˆln | aLfP aLf   (24) 

The logarithm of the estimate is a deterministic 

function of the random variable and it is linear; 

thus the logarithm of the estimate also has 

normal distribution with the mean value equal 

to the logarithm of the probability estimate 

itself and the variance calculated as: 
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The second component of the probability of 

capsizing is the probability to exceed the 

threshold a. Its estimation does not encounter 

any principle difficulties: 
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Confidence interval for the estimate of 

probability Pa can be evaluated using binomial 

distribution for the estimate: 
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Where QB is a quantile (inverse of the 

cumulative distribution function) of the 

binomial distribution; the first argument is the 

probability corresponding to the quantile, the 

second argument is a number of Bernoulli trials 

and the third argument is a probability of 

“success” in the individual trial. The 

confidence probability P3 is a confidence 

probability for a component. Since the formula 

(1) contains three estimates, the confidence 

probability for each of them is calculated as: 

 3
3   PP  (28) 

Where P is desired confidence interval for the 

estimate of probability of capsizing 95% used 

in this numerical example 

The complete rare problem, i.e. probability of 

capsizing after the upcrossing, is calculated as 

 aLfaC PPP |
ˆˆˆ   (29) 

Boundaries of the confidence interval are 

calculated using the product of corresponding 

boundaries of the estimates in equation (29). 
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COMPLETE SOLUTION 

Non-Rare Problem 

The solution of the non-rare problem is 

relatively simple within the framework of the 

adopted approach. The rate of upcrossing of the 

intermediate threshold m needs to be estimated 

(not to be confused with the threshold for the 

differences between critical and instantaneous 

roll rate at the instant of upcrossing). By this 

definition, the threshed must be chosen in a 

way that the number of upcrossings becomes 

representative. For the threshold m=13 deg in 

the considered numerical example, there were 

NY=207 upcrossings. The upcrossing rate can 

be estimated as  

 
tNN

N

rt

Y


̂  (31) 

Where Nt=3600 is the number of points in each 

record, Nr=20 is the number of records and 

t=0.5 s is the time increment. 

Boundaries of the confidence interval can be 

evaluated using binomial distribution, in a 

similar fashion to a probability estimate: 
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The order of arguments for the quantile of the 

binomial distribution QB is the same as in 

equation (27). 

Rate of Failures 

The rate of failures is a more practical 

probabilistic metric for capsizing than 

probability, since the latter depends on the time 

of exposure: 

 CC P  (33) 

Thus, the extrapolated estimate of the rate of 

capsizes is expressed as: 

 aLfa
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The boundaries of the confidence interval are 

products of the respective boundaries of each 

component: 
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INITIAL VALIDATION 

To test the concept, an initial validation was 

carried out. The validation of the split-time 

method was understood in terms of the 

procedure for the validation of extrapolation 

methods developed and followed by Smith & 

Campbell (2013). Tier 1 of such validation 

procedure requires the comparison of the “true” 

value (estimated for a relatively large data set) 

with a series of extrapolations performed using 

much smaller data sets.  

As this effort was primarily focused on the 

testing the concept, the size of the “large” 

dataset was only 500 hours. The conditions for 

this data and its source were described earlier 

in the paper. There were 21 capsizings in this 

data set – sufficient to estimate the true value: 

 
tNN

N

Rt

CT

C


̂  (36) 

Where NC is a number of capsizings observed, 

NR=1000 is the number of records in the 

“large” dataset (not to be confused with 

number of records in the extrapolation data set 

Nr=20). Evaluation of confidence interval for 

the “true” value, in principle, can be done 

similar to the non-rare problem (see Equation 

31). However, the total number of points in the 

large data set can be too large to calculate the 

binomial quantiles. In this case, a normal 

distribution can be used instead of binomial 

(Smith & Campbell 2013). The results of the 

initial validation are shown in Figure 7. As one 

can see, 9 out of 10 extrapolations provided 

overlap of the confidence intervals and thus are 

considered “passed”.  

Following recommendations from Smith & 

Campbell (2013), the passing rate of 90% is 

accepted here, leaving 5% for non-passing due 

to random reasons (since P=0.95) and another 

5% for other reasons, such as imperfections of 
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tail fit. Then, for 10 trials, one can expect at 

least 7 extrapolations passed: 

    79.0,10,15.0   pNPQ EB  (37) 

where NE=10 is number of extrapolations and 

p=0.9 is required passing rate. Indeed the 

conclusion is favourable for the split-time 

method. 

 

Fig. 7: Results of initial validation of the Split-Time method 

CONCLUSIONS AND FUTURE WORK 

The most important result of the present work 

is the first indication that the Split-Time 

method is capable of the evaluation of the 

probability of capsizing for the case of 

variation of righting arm in waves (i.e. for pure 

loss of stability).  

The Split-Time method for righting arm 

variation has finally been made computable. 

This was achieved by fixing the threshold in 

roll angle and calculating the critical roll rate at 

the instant of upcrossing only. The tail was 

then fitted for the sample of the differences 

between the critical and instantaneous roll rates 

at the instant of upcrossings.   

Also, the insight into perturbation of the roll 

rate at upcrossing has revealed the equivalency 

between the classical definition of ship stability 

and the general definition of motion stability of 

a dynamical system.  

This has made the difference between the 

instantaneous and critical roll rates taken at the 

instant of upcrossing an effective metric for 

capsize event. Unlike the peak of the roll angle, 

this quantity remains smooth when capsizing 

occurs, so standard statistical extrapolation 

procedures become applicable. 

A few items remain for the future work. 

Sample calculations carried out for a limited 

number of cases show some conservative bias, 

hinting that the exponential tail may be too 

heavy. It makes sense that the Generalized 

Pareto Distribution for non-zero shape 

parameter will do better.  

Also, validation should be performed with 

cases significantly more rarity, like the one 

shown in Smith & Campbell (2013). 
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