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ABSTRACT  

Ikeda’s estimation method is well-known as a prediction method of the roll damping.  It is 

developed with theoretical and experimental backgrounds for periodical roll motion.  However, it is 

difficult to apply it to estimation of transitional and non-periodical roll motion problems (i.e. roll 

motion and parametric rolling in irregular waves, broaching to capsize etc).  In this study, an 

estimation method of bilge-keel component of non-periodic roll damping for time domain is 

investigated.  Firstly, an estimation method for bilge-keel component of roll damping for time-

domain is proposed.  This method is based on Ikeda`s prediction method, the drag coefficients are 

based on an empirical formula of flat plate.  Secondly, the estimated results are compared with 

measured results by irregular forced rolling test.  Finally, parametric rolling in irregular waves is 

calculated by using the estimation method of bilge-keel component in time-domain.  The difference 

of calculated roll motions by using the proposed method and Ikeda’s original method is shown. 
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INTRODUCTION 

It is important to evaluate stability of vessel 

(especially roll motion) in order to sail safely.  

For accurate prediction of stability, it is 

significant to estimate hydrodynamic forces 

acting on ship with accuracy.  However, it is 

not easy to estimate roll damping, which 

includes significant viscous effects.  It is well 

known that there is a prediction method of roll 

damping proposed by Ikeda’s et al.(1976) 

(1977) (1978). It is developed with theoretical 

and experimental backgrounds for periodical 

motion.  However, it is difficult to apply it to 

estimation of transitional and non-periodical 

roll motion problems (i.e. roll motion and 

parametric rolling in irregular waves, 

broaching to capsize etc).  An approximate 

transformation is necessary in order to apply it 

to non-periodic rolling in time domain 

simulation.  The purpose of this study is to 

propose an estimation method of bilge-keel 
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component of roll damping for time domain 

simulation.  Finally, parametric rolling in 

irregular wave is calculated by using the 

estimation method of bilge-keel component in 

time-domain.  The effects of the estimation 

method on occurrence of parametric rolling are 

shown. 

BILGE-KEEL COMPONENT OF ROLL 

DAMPING FOR TIME DOMAIN 

SIMULATON 

Ikeda’s method and change of the method 

Bilge-keel component of roll damping is 

composed of normal force component on bilge-

keels and hull surface pressure component.  

The normal force component is calculated by 

Eq.(1) using a drag coefficient of flat plate 

expressed by Eq.(2).  The hull surface pressure 

component is calculated by Eq.(3).  The 

coefficient CP in Eq.(3) is divided into the 

pressure coefficient CP
+
 on front face of bilge-

keels and the pressure  coefficient CP
-
 on back 

face of bilge-keels.  And the pressure 

coefficient CP
-
 is calculated by Eq.(4) using CD 

expressed by Eq.(2).  The hull surface pressure 

component can be obtained from the 

integration which is shown in Fig.1.  Length of 

negative pressure region S0, depends on the 

Keulegan-Carpenter number, and it is 

calculated by Eq.(5), 
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where lBK and bBK is the length and breadth of 

the bilge-keel and l is the distance from the roll 

axis to the tip of the bilge-keel.  a is roll 

amplitude.  f is a correction factor to take 

account of the increment of flow velocity at the 

bilge.  

There are two problems to apply Ikeda’s 

original method to roll damping calculation in 

time domain.  The first one is that the drag 

coefficient acting on the bilge-keel is drag 

coefficient of flat plate in steady oscillation and 

it is constant for one swing (from stop to stop).  

It is observed that drag coefficient of flat plate 

in steady oscillation is different from value for 

time-domain according to the previous study 

(Katayama et al.,(2010)).  The other is the 

memory effects.  It was pointed out that the 

vortexes created by previous swings affect roll 

damping in time domain.   
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Fig.1 Assumed pressure distribution on the hull 

surface created by bilge-keels. 

 

Estimation method of Roll Damping of non-

periodic motion 

The empirical formula of the drag coefficient 

of flat plate in time domain is used to solve the 

problems.  

Under one-way acceleration, the drag 

coefficient CDacc of flat plate for time-domain 

can be obtained as follows, 
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where CD0 is the drag coefficient under uniform 

flow. KC number for Eq.(6) is obtained from 

Eq.(7). y in Eq.(7) is a moving distance from 

the starting position. 

The drag coefficient under steady oscillation is 

obtained from Eq.(8). KC number for Eq.(8) is 

obtained from Eq.(9), 
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where yA is amplitude of steady oscillation. 

In the previous paper (Katayama et al. (2010)), 

it is confirmed that the drag coefficient in each 

swing of steady oscillation is gradually 

increasing, and after the 4th swing the drag 

coefficient becomes constant.  These 

characteristics are also expressed by an 

empirical formula in the paper.  In order to 

apply it to time domain estimation of drag 

coefficient, the following equation is proposed, 
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where n is the number of swing (n = 1,2,3 and 

4). In Eq.(10), it is assumed that the drag 

coefficient in first swing is CDacc and the drag 

coefficient that is increased from the 1st swing 

to the 4th swing according to the ratio of CDperi 

and CD1 is CDaccn.  The drag coefficient of flat 

plate for 1st swing in steady oscillation is CD1 

and obtained by following equation. KC 

number for Eq.(11) is obtained from Eq.(9), 
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CD in Eq.(2) is replaced with drag coefficient in 

time-domain to estimate bilge-keel component 

in time-domain.  Considering the increment of 

flow velocity at the bilge, drag coefficient of 

bilge-keel is obtained from Eq.(12) with 

replacing Eq.(8) and Eq.(14) with replacing 

Eq.(6).  KC number in Eq.(12) is obtained by 

using Eq.(13). KC number in Eq.(14) is 

obtained from Eq.(15), 
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where  is a moving distance from the starting 

position where angular velocity of roll is zero. 

Considering the memory effects on bilge-keel 

component, the drag coefficient for 1st swing is 

expressed as Eq.(16) with KC number in 

Eq.(13).  The drag coefficient for each swing 

can be obtained by substituting the drag 

coefficient in Eq.(12),(14) and (16) for Eq.(10). 
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COMPARISON OF ESTIMATED AND 

MEASURED RESULTS 

Measurement method of Roll Damping 

Roll damping of bilge-keel component acting 

on the two dimension model with bilge-keel 

are measured. The principal particulars of two 

dimensional model are shown in Table1. 
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Estimated results are compared with measured 

results in irregular forced rolling. 

 

Table 1 Principal particulars of two dimensional model． 

Length 0.8m 

Breath 0.237m 

Draught 0.096m 

Height of Roll axis 0.096m 

Bilge-keel 0.01m×0.8m 

CB 0.977 

 

Fig.2 Schematic view of forced rolling device. 

 

The model is fixed by a forced rolling device 

(shown in Fig.2), and it is forced rolling. Roll 

angle and damping moment are measured. Roll 

damping is obtained from subtracting the 

inertia moment and restoring moment from the 

measured moment. Eddy component accounts 

for small percentage of roll damping and can 

be ignored. Frictional component is obtained 

by following equation. 
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In estimation of the coefficient of friction, 

Reynolds number in time-domain is used, 

whose characteristic length is moving distance 

from the starting position where angular 

velocity of roll is zero. Three estimation 

methods of bilge-keel component are compared. 

The drag coefficient in the formulas is different 

for each method. The first one uses the drag 

coefficient, which changes in every time step, 

depends on Kcd number expressed by Eq.(15). 

The second one uses the drag coefficient 

considering memory effect on the bilge-keel 

component by Eq.(10). The third one uses the 

constant drag coefficient depends on Kc 

number expressed by Eq.(13). 

Irregular motion test 

Fig.3 shows comparison of the measured and 

the three estimated results in time-domain.  The 

upper, middle and bottom figure of Fig.3 show 

the roll angles, the roll damping, and the drag 

coefficient in time-domain, respectively.  The 

result of the second method shows the value of 

roll damping becomes maximum before the 

velocity become maximum.  

In the case, the results show that estimated 

results of the method considering memory 

effect on the bilge-keel component are best 

agreement with measured result in the three 

methods. 
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Fig.3 Results of irregular motion test. 
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TIME DOMAIN SIMULATION USING 

PROPOSED METHOD  

Parametric rolling in irregular waves is 

calculated to investigate the effects of the 

proposed method. 

The sample ship and calculation method 

Fig.8 and Table 2 shows body plan and 

principal particulars of the sample ship.   

The numerical simulation model (Hashimoto 

and Umeda, 2010) is used for calculations.  In 

the simulation, roll damping component is 

estimated by two methods.  The first one is a 

simplified method using Ikeda’s original 

method which is used originally in the 

numerical simulation, and the other one is the 

proposed method in this study, which includes 

the estimation method for bilge-keel 

component by using the drag coefficient 

considering memory effects in time-domain.   

In the simplified method, roll damping is 

estimated at changed roll amplitudes 

systematically in roll natural period by Ikeda’s 

original method.  And roll damping in the 

simulation is calculated by interpolation of the 

results.  The roll amplitude is calculated by 

Eq.(18) with the roll angle and the roll angular 

velocity in each time step. 
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The simulation is carried out at Fn =0.083 in 

irregular head waves whose significant wave 

height is 6.0m.  The spectrum of irregular wave 

is the ITTC spectrum expressed by Eq.(19).  
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To make irregular waves, the spectrum whose 

range of wave period is Te/T=0.45~0.65 is 

divided into 60, and a sine wave of each 

frequency component is superposed.  In 

addition, the phase difference of each 

frequency component is given as random 

number.  

Roll motions and roll damping in time histories 

are compared between two methods and the 

effect of the difference of estimation methods 

on prediction of the parametric rolling. 
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Fig.8 Body plan of the sample ship. 

 

Table 2 Principal particulars of the subject ship and wave 

condition in the time domain simulation． 

Length between perpendiculars: LPP 192m 

Breath: B 32.26m 

Depth: D 26m 

draught: d 9.0m 

Height of gravity: KG 17.0m 

Metacentric height: GM 1.89m 

Natural roll period: T 18.42s 

Displacement: W 27205ton 

Breadth of bilge-keels 0.7m 

Position of bilge-keels s.s. 3.34-s.s. 5.59 

Wave spectrum ITTC spectrum 

Significant wave height: H1/3 6.0m 

 

Simulated results 

Fig.9 shows comparison between the two 

calculated roll motions in time-domain.  In the 

result of the proposed method, periodic motion 

occurs.  On the other hand, in the result of the 

simplified method, periodic motion does not 

occur.  It is confirmed that parametric rolling 

occurs more easily in the proposed method 

than in simplified method.  Fig.10 shows 

histogram of roll angles for two methods.  The 

results show that frequency of amplitudes over 

5 degrees in the proposed method is higher 

than that in the simplified method.  Therefore, 
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it is confirmed that roll amplitudes of the 

proposed method become larger than the 

simplified method. 
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Fig.9 Time history of simulated roll motions. 

 

 
Fig.10 Histogram of roll amplitude 

 

CONCLUSIONS 

In this paper, an estimation method of bilge-

keel component of roll damping in time-

domain is proposed based on an empirical 

formula of drag coefficient of flat plate.  The 

bilge-keel component acting on the two 

dimension model with bilge-keels is measured, 

and compared with the estimated result.  The 

estimated result shows better agreement with 

the measured one. 

The estimation method is applied for a time 

domain simulation of parametric rolling in 

irregular head waves (Hashimoto and Umeda, 

2010).  And it is confirmed that roll amplitudes 

become larger easily, because the estimated roll 

damping is slightly smaller than the simplified 

method which is used originally in the 

simulation.   
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