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Accurate prediction of a ship response in roll motion is one of the fundamental problems in 

fluid dynamics. It has inspired numerous research activities, many of them involving physical tests. 

The tank experiments, although seemingly the most convenient for handling such complex problems, 

have proven to be very challenging, both technically and conceptually. This is due to the very convo-

luted nature of roll motion hydrodynamics as well as the small magnitude of dissipation forces com-

pared to inertia and hydrostatic forces. When discussing the impact of roll damping prediction on 

damage ship stability and survivability, before migrating from simplified theories or semi-empirical 

models towards more complicated and time-demanding tools, the question whether accuracy of avail-

able alternatives is sufficient to justify such transition must first be addressed. Similarly, when ex-

perimental data is provided for validating CFD codes, it is sensible to do so only if the uncertainty 

limits of the former are evaluated. This makes uncertainty assessment a central problem in the pursuit 

for high-accuracy prediction of roll damping characteristics. It may also reveal the potential limit of 

applicability of the adopted approach. 

This paper presents uncertainty assessment of forced roll measurements performed on a float-

ing body in calm water and discusses the main sources of errors and impact on the final prediction. 

 

Introduction 

An accurate prediction of hydrody-

namic forces in roll motion is a problem of 

central importance in studies on ship stability 

and as such it has attracted numerous research 

studies addressing the issue both analytically 

and experimentally with works of Frank 

(Frank, 1967) and Vugts  (Vugts, 1968)  being 

among the finest examples. From the very be-

ginning it has been clear, however, that meth-

odologies based on linear theory and potential 

flow (inviscid fluid) is practically limited to 

small amplitude motions and does not repre-

sent well the dynamics of a dissipative system 

oscillating with finite amplitude. The semi-

empirical method of Himeno and Ikeda 

(Himeno, 1981) employed for correcting 

damping coefficient has proven to be very use-

ful but its applicability is limited to “standard” 

shapes and it generally suffers from drawbacks 

of regression-based techniques. On the other 

hand a more sophisticated approach, based on 

RANSE (CFD) codes, might help understand-

ing the problem better but in order to provide 

high quality data CFD findings have to be 

verified with experimental results – and here is 

where the real problem seems to start because 

hydrodynamic reaction in roll is small, much 

smaller than the dominant inertia and restoring 

moments. Indeed it can be readily shown that 

damping moment has a magnitude comparable 

to uncertainty in restoring and inertia moments 

(for the tested body the maximum ratio of 

damping moment to total inertia, external exci-

tation and restoring moment does not exceed 

6%, 12% and 0.5%, respectively). Further-

more, a ship in roll motion is a non-

conservative system and although dissipation 

forces (in calm water) can be generally de-

composed into wave radiation (potential 

damping), friction  and vortex shedding (vis-

cous effects), it is very difficult to measure (or 

assess) accurately individual components, with 

the last two being strongly dependent on mo-

tion amplitude and all three on frequency. Go-
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ing down this route, one can quickly realise 

that a seemingly simple problem becomes a 

real “beast” with more and more difficulties 

appearing whenever a new state variable is 

added to the equation (to mention only wave 

diffraction of a ship rolling in waves, Paw-

lowski, 1999). Finally, there is also the ques-

tion of the experimental technique adopted, 

with measurements in-waves being one of the 

least controllable experimental environments, 

practically leaving room for calm water meas-

urements only. These are traditionally being 

performed as either forced oscillations about 

fixed axis of rotation or roll decay tests. In 

case of the former, the experimental setup in-

volves constrained motions, which deviate 

from realistic conditions whereas applicability 

of the latter is limited to single frequency es-

timates, which is of little, if any, use for nu-

merical tools.  

Measurements performed on a freely 

floating body forced to roll by an internal de-

vice seem to be an attractive alternative, re-

taining the virtues of calm-water techniques. 

Furthermore, the fact that model motions can 

be unconstrained and the forcing moment con-

trollable, allow for investigating roll dynamics 

of a ship in damaged condition in an experi-

mental environment accounting for transient 

phenomena. 

Understandably, the technique adopted 

has certain limitations and it is the intention in 

this paper to discuss some of the key issues 

related to uncertainty assessment associated 

with the method and, to some extent, with 

measurements of hydrodynamic reaction in 

general.  Detailed discussion is confined here 

to uncertainty of the mathematical model, 

which allows for comparison of experimental 

data with analytical and other experimental 

predictions, and on phase lag assessment – a 

factor thought to have the highest impact on 

the quality of the measured data. Some sources 

of errors are discussed briefly-mainly to dem-

onstrate expected sensitivities of the results. 

 

Experiment Set-up 

Experiments discussed in this paper 

have been carried out at the Kelvin Hydrody-

namics Laboratory, a testing facility of the 

University of Strathclyde (UoS) in autumn 

2009. These experiments are part of research 

activities aiming to address the hydrodynamic 

properties of ships in damaged condition and 

the results presented here are meant to validate 

the technique adopted. 

 

Figure 1 Cylindrical section of a RO-PAX vessel 

subjected to forced roll in calm water. 

The tested model is a 1:40 scale cylindrical 

section of a RO-PAX vessel of length 60 m, 

draught 6.287 m, beam 27.8 m and vertical 

position of centre of gravity (KG) equal 8.337 

m (GM = 5.509 m). An internal forcing device 

consists of set of coupled gyros of maximum 

7000 rpm spin velocities and precession rates
1
 

limited to 1.7 Hz. Gyros are supported by 

common frame, pivoted alongside of the 

model centre-plane and with rotation about 

pivoting axis constrained by the strain gauge 

load cell measuring force component of the 

generated moment. 

Motions of the body are recorded with use of 

optical motion capture system based on high-

speed infrared cameras and set of reflective 

(passive) markers fitted to the body. Addition-

ally there are two devices – single axis accel-

erometer and solid-state gyro for reference 

measurements of the phase lag of response. 

Uncertainty Assessment 

Uncertainties associated with the mathemati-

cal model 

For the purpose of this paper it is as-

sumed that motions of a body rolling in calm 

water can be described by a set of linear ordi-

nary differential equations. In such model, hy-

drodynamic reaction can be conveniently ex-

pressed by means of orthogonal components 

                                                      
1
 This is equal to maximum roll frequency of the 

body 
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given as added inertia and damping coeffi-

cients. It should be noted here that the assump-

tion of orthogonality of the hydrodynamic 

moment components holds only for purely 

harmonic excitation - this assumption shall be 

discussed further in the following. Further-

more, it is assumed that the flow around the 

body can be considered two-dimensional and 

hence the problem can be reduced to vertical 

motions only, involving three degrees of free-

dom (DOF): sway (Y), heave (Z) and roll (). 

In order to describe motions of the body in 

space two right-handed coordinate systems are 

employed. The global, fixed in space, refer-

ence system is described by a set of three or-

thogonal axes OXYZ.  The second coordinate 

system is body-fixed, with origin at the inter-

section of the body centre-plane and midship-

section (o).  The axes are denoted by x, y and z 

with axes ox and oz at the centre-plane, the 

latter positive upward. Sway and heave mo-

tions are understood as rectilinear displace-

ments of the origin o along the global axes OY 

and OZ respectively, and roll as rotation about 

the body-fixed axis ox. If the centre of gravity 

(G) coincides with the origin of body-fixed 

system the equations of motion will take the 

following form 
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Where 

m – mass of the body 

I – mass moment of inertia 

aii – added mass or added moment of inertia 

coefficient in i-mode of motion 

aij – added mass coupling coefficient of j- into 

i-mode of motion 

bii – damping coefficient in i- mode of motion 

bij – damping coupling coefficient of j- into i-

mode of motion 

cii – hydrostatic restoring coefficient in i-mode 

of motion 

cij – hydrostatic restoring coupling coefficient 

of j- into i-mode of motion 

Fy, Fz, M – external forces/moment in OY, OZ 

and (about) ox axes, respectively 

As the heave motion is symmetrical with re-

spect to OZ axis, it alone cannot induce any 

lateral or angular motions and hence 

aiz=biz=ciz=0. Furthermore, ciy= cyj =0. More-

over, as the internal roll motion generator pro-

duces a pure moment, force components Fy 

and Fz are both equal to zero and the simpli-

fied equation (1) can be expressed in scalar 

form as follows:  
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 (2) 

It can be readily seen from equation (2) that 

with focus on roll motion and with neither 

sway nor roll being coupled with heave, the 

heave equation can be excluded. Furthermore, 

although external forces in horizontal and ver-

tical directions have been dropped from the 

equation, hydrodynamic coefficients remain, 

which is the consequence of the vertical posi-

tion of axis of rotation (centre of rotation) ex-

pected to lie at some point between the origin 

o and the centre of gravity. In fact, the centre 

of rotation of a freely floating body, by anal-

ogy to the coupled-mass system, will lie at the 

centre of coupled mass of the rigid body and 

the accompanying fluid (Balcer, 2004). 

So far it has been assumed that the body oscil-

lates about the axis passing through the origin 

o and in such case the rolling body will be-

come a single DOF system due to vanishing of 
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the sway component (y=0). In the general case 

however, roll about an axis not passing 

through o would result in sway motion given 

as 

 sin hy  (3) 

Where, h is the vertical distance between the 

centre of rotation and origin o of the body 

fixed system (in upright position). On the other 

hand, in case of a floating body, the centre of 

rotation will not be fixed in space as due to 

instantaneous changes in submerged volume it 

will be subjected to vertical oscillations (roll-

induced heave). This is a consequence of fi-

nite-amplitude angular displacement and 

would not be present if roll amplitude was in-

finitesimal or the body a circular cylinder. 

However, as figure (2) shows, for small and 

moderate roll angles roll-induced heave ampli-

tude is expected to be small, constituting some 

6% of oG at 20 deg roll angle.  Bearing this is 

mind, for the purpose of the initial uncertainty 

assessment it is assumed that vertical oscilla-

tions of the instantaneous axis of rotation can 

be neglected and therefore roll-induced sway 

motion can be expressed by means of equation 

(3). 

 

Figure 2 Sinkage due to heel of the freely floating 

cylinder tested at UoS (model scale). 

As equation (3) indicates, roll-induced sway is 

implicit function of time thus its time deriva-

tives can be expressed as follows 
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Assuming the external moment to be of the 

form:    tMM A sin , where 
AM ,   

and   stand for moment amplitude, circular 

frequency and phase lag respectively, the an-

gular displacement and its time derivatives are 

given as 
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 Where, A stands for roll amplitude. 

Making use of orthogonality of roll motion 

and its derivatives, equations (4) and (5) can 

be substituted into sway formulae (2), which 

after simple manipulation yields 
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These equations express the relationship be-

tween coupling coefficients of roll into sway, 

sway coefficient and distance from centre of 

rotation to the origin o of body-fixed coordi-

nate system. They can be combined with roll 

equation and after some rearrangement, roll 

added inertia and damping coefficients for os-

cillations about the natural axis of rotation can 

be expressed as follows
2
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 (7) 

Where 
o

I is mass moment of inertia of the 

body about the axis passing through the origin 

o. 

The above equations form the basis for uncer-

tainty assessment and sensitivity analysis. In 

the case of the experimental technique being 

discussed, sway coefficients are not assessed 

experimentally, so they can either be ignored 

or assessed by means of theoretical prediction. 

                                                      
2
 These equations have been derived following an 

assumption that coupling coefficients are symmet-

rical, i.e. relations  yy aa   and  yy bb  hold. 
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It is understood that if the body’s centre of 

gravity lies close to the waterplane the last 

terms of equation (7) can be neglected (with 
2h being second-order) but in the general case 

their contribution to the results is expected to 

be significant. For the purpose of the analysis 

presented here theoretical predictions of the 

sway added inertia and damping coefficients 

were taken into account. On the upside it can 

be said that, as previous experimental works 

indicate, predictions of added mass and damp-

ing coefficients in sway demonstrate good 

conformity with physical model tests. 

Given that variables present in equation (7) are 

not correlated (i.e. there are no underlying 

functional relationships between measured 

variables), the systematic (bias) part of uncer-

tainty can be expressed in a form based on 

second-order total differential (Coleman and 

Steele, 1999): 
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Where, f is a functional relation between 

measured variables ix  ,  .Su  denote system-

atic errors in derived quantities and measured 

variables; n stands for number of variables. 

Partial derivatives in the above formula are 

referred to as sensitivity coefficients. In prin-

ciple, function f should be decomposed to the 

level of directly measured variables, i.e. mass, 

distance, force, motions and time as the re-

maining quantities are derived from them, e.g.: 

1. Hull mass, moment of inertia in air 

and vertical coordinate of centre of 

gravity are measured prior to testing 

and the two quantities - force due to 

generated moment and motions of the 

body – are directly measured during 

the experiments.  

2. Circular frequency and phase lag of 

the response are derived from the time 

history of force and motion recordings 

and, as such, they are subjected to un-

certainties associated with the former. 

Similarly, moment of inertia in air will 

be affected by uncertainties in meas-

ured mass and period of oscillations in 

air.  

 For the purpose of illustrating the process of 

uncertainty assessment, only errors in moment, 

force and response lag will be discussed in 

detail in the following paragraphs whereas for 

other terms, only sensitivity of the results will 

be briefly presented, based on estimates. 

The following figures show comparison of 

experimental data with potential flow predic-

tions obtained for the actual body shape and a 

rectangular cylinder of B/T ratio equal 4. Error 

bars correspond to the systematic part of un-

certainties estimated for all variables present in 

the LHS of equation (7).  

 
Figure 3 Roll added moment of inertia coefficient – 

comparison with potential-flow prediction for the 

actual body shape (solid) and rectangular cylinder 

of B/T=4 (dashed). 

 

Figure 4 Roll damping coefficient – comparison 

with potential-flow prediction for the actual body 

shape (solid) and rectangular cylinder of B/T=4 

(dashed).  

As can be seen from figures (3) and (4), ex-

perimental data follow an obvious trend but 

special attention should be paid to the two 

points corresponding to the lowest frequencies 

of oscillation, at which both added inertia and 

damping coefficients take negative values. 

Undoubtedly, these results are wrong but serve 
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as good indication of difficulties in measure-

ments at low frequencies where damping is 

small and phase angle approaches zero asymp-

totically. This behaviour is also confirmed by 

large systematic uncertainties. It is also worth 

noting that damping prediction suffers from 

large biases not only at low- but also at high-

frequency oscillations, caused by phase lag 

approaching -180 degrees
3
. 

In order to present contributions of the indi-

vidual components to the total bias, the follow-

ing ratio is used 

 

 

 

 










































n

i

iS

i

iS

i

S

iS

i

xu
x

f

xu
x

f

fu

xu
x

f

1

2

2

2

2

 (9) 

Individual contributions, expressed in terms of 

percentage, are presented in the following fig-

ures. 

 

Figure 5 Contributions of individual components in 

total bias error estimated for roll added inertia 

coefficient. 

In case of added inertia coefficient it can be 

seen that there are five significant contributors: 

errors in amplitudes of external moment and 

response, restoring coefficient, hull inertia and 

response phase lag (in the middle- and high-

frequency ranges). Comparison of this charac-

teristic with that given by figure (3) may sug-

gest that bias in moment amplitude causes the 

lowest frequency values to suffer larger uncer-

tainties than the remaining values.  

                                                      
3
 According to the sign convention adopted phase 

angles are negative. 

 

Figure 6 Contributions of individual components in 

total bias error estimated for roll damping coeffi-

cient. 

In case of damping coefficient it is clear that, 

practically, the sole contributor to the total bias 

is response phase angle with the exception at 

mid-range frequencies where there is some 

bias associated with moment measurements. In 

any case, systematic errors in roll and moment 

amplitudes as well as phase lag estimation are 

dominant.  This being the case, the last two 

will be discussed in some detail. Before this, it 

might be useful to have a closer look at equa-

tions describing the rolling moment produced 

by the gyroscopic generator in order to justify 

the aforementioned assumption of orthogonal-

ity of hydrodynamic moment components. 

Uncertainties associated with moment gen-

eration and measurement  

In the most general form the equation of mo-

tion of the single gyro fitted to the hull is given 

as 
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(10) 

Where,  is the roll angle, G gyro precession 

angle, Jx, Jz gyro moments of inertia with re-

spect to local coordinate system, 
o

ZJ is the 

system inertia with respect to roll axis and Mc 

is external moment about roll axis. 

Without going into detail - this can be found in 

(Cichowicz, Vassalos, & Jasionowski, 2009) - 

it can be assumed that the moment Mc taken 

with minus sign can represent damping and 
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restoring components (i.e.:   cbM c   ) 

and therefore the equation (10) can be rewrit-

ten as 
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(11) 

The above equation shows clearly that the mo-

tions produced by the gyroscopic roll genera-

tor are not, in the general case, purely har-

monic as there are quadratic and double-

frequency terms present. However, it is so 

unless moments of inertia of the gyro and its 

gimbal (Jx and Jz) about local axes are equal, 

in case of which, the quadratic and double-

frequency components vanish: 
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(12) 

Where, JG is a substitute gyro moment of iner-

tia following that Gxz JJJ   

Assessment of the gyro inertia properties has 

shown that indeed, differences in the moments 

are small and can be ignored – this can also be 

verified by observing the response power spec-

trum in figure 7, where there is no double-

frequency component present
4
 

 

Figure 7 Example of roll power spectrum for low 

frequency case (=1.5 rad/s).  

Moment (force) measurement is thought to be 

very reliable, mainly due to use of simple 

strain gauge and pivoting gyro frame to elimi-

                                                      
4
 This also implies that the following relation holds: 

GGxGz JJJ   22 sincos  . 

nate (or minimize) impact of lateral inertia 

forces that might cause bending of the trans-

ducer. The load cell itself has low inertia and 

therefore short response time as well as linear 

characteristics with very low hysteresis in a 

broad range of loads. All this is particularly 

important for accurate prediction of the body 

response lag as discussed in the next section.  

Uncertainties associated with response lag 

estimation 

It is a well known fact that accurate phase lag 

estimation is the most difficult task in meas-

urements to determine hydrodynamic reaction. 

In the case of oscillations about the natural 

axis, the body motions can be recorded only 

by using non-contact techniques, based either 

on measurement of acceleration (velocity) 

components performed using an internal de-

vice or by an optical motion capture system. 

The former method can be referred to as “clas-

sical” approach and in principle such devices 

are widely used even as independent wireless 

units (La Gala, Gammaldi, 2009). In case of 

electromechanical devices, however, their re-

sponse characteristics (i.e. internal damping 

and inertia) may be a serious issue and accu-

rate dynamic calibration can be very difficult. 

Additionally, multi-mode (multi-axis) devices 

may suffer inaccuracies due to cross-coupled 

response. Optical motion capture systems are 

affected neither by mechanical factors like 

inertia nor by cross-coupling but, as it has 

been found in the course of experiments car-

ried out at UoS, their real-time output may 

suffer time shift due to data processing. As a 

matter of fact the time shift itself would not be 

considered as a major issue but the real prob-

lem lies in its randomness, which makes cor-

recting for the time lag practically impossible.  

Electronic (solid state) devices, in turn, are 

compact, easy to use and calibrate but their 

accuracy might be questionable and hence 

readings should be approached cautiously. 

During the present measurements the response 

phase angle has been estimated on the basis of 

three devices: single axis accelerometer, single 

axis solid-state (electronic) gyro and optical 

motion capture system. The last device proved 

to be unreliable for the aforementioned reasons 

whereas the first two devices have performed 

much better. However, as the comparison of 
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damping prediction shows, there are signifi-

cant discrepancies at super-critical frequencies 

(see figure below), for which a consistent ex-

planation has not been found yet. 

Comparison of the results shows clearly that 

low frequency predictions match well but 

high-frequency characteristics are completely 

different. In principle, it would be expected 

that mechanical devices performed worse at 

higher frequencies but accelerometer based 

characteristics follow the theoretical prediction 

better. Bearing this in mind it should be said 

that the problem has to be investigated in de-

tail as to avoid speculative and somehow 

counter-intuitive judgment. For the time being 

it is assumed that accelerometer readings 

should be used as a basis for further analysis 

until the question of solid-state gyro accuracy 

is resolved. 

 

Figure 8 Comparison of damping prediction based 

on solid-state gyro and single-axis accelerometer-

based phase prediction. 

Independently on the measurement method, 

there is also a question of assessing phases of 

the time histories of excitation moment and 

roll motion. Estimates presented in this paper 

are based on least-squares fit to the steady-

state part of the raw data with standard devia-

tions from the analysis constituting the basis 

for the bias error.  Such approach is relatively 

easy to apply and provides instant information 

on errors but it is semi-manual and might be 

considered as not particularly systematic. 

Spectral techniques may be better alternative 

but there is some concern associated with them 

and related to the resolution of harmonic de-

composition, particularly for low frequency 

oscillations and large phase velocity of the 

radiated waves, which if not damped suffi-

ciently may have difficult to assess impact on 

the results
5
.  

Regarding the formal uncertainty assessment, 

there are certain points requiring attention. 

Firstly, there is strong dependency of phase 

angle estimate on circular frequency. This de-

pendency is not clearly exposed in the state 

equation but consequences of its propagation 

into the results are apparent. In short, although 

expected variations in frequency estimates 

across the measured variables are small, even 

these negligible discrepancies introduce sig-

nificant variations in the phase angle esti-

mates. For this reason, in the least-squares fit, 

frequency is estimated on the basis of force 

recordings (considered to be most reliable) and 

passed as a constrained parameter to the esti-

mates of the remaining signals. Although such 

approach is formally correct it is thought that 

harmonic analysis might be more suitable as it 

automatically averages frequency and, which 

is perhaps even more important, it makes 

phase angle formulae easy to process for pur-

pose of uncertainty assessment. 

From the formal point of view, uncertainties 

associated with curve fitting (or harmonic de-

composition) are considered to be systematic 

errors. However, unlike “ordinary” biases, 

curve fitting errors can be reduced by increas-

ing the length of the sample and in this respect 

they behave more like precision errors. This is 

very important as low and high frequency er-

rors in damping could be further reduced by 

means of detailed investigation of all the mo-

tion components and more systematic selec-

tion of the data sample, i.e. by making sure 

that within the selected time the model was not 

subjected to transient motions, e.g. yaw caused 

by imperfections in gyros’ ramp velocity char-

acteristics. 

                                                      
5
 In simpler terms there is certain concern that the 

radiated wave can be reflected from the wavemaker 

and add energy to the system. This, given the rela-

tively high phase velocity of the low-frequency 

radiated waves, combined with the long transient 

period of the forced motions in consideration, con-

stitutes a serious problem and may serve as an ex-

planation for the large uncertainty in both added 

inertia and damping at very low frequencies, as 

well as for their negative magnitude.  
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Additional considerations 

Although the results do not exhibit sensitivity 

with respect to sway there is some indication 

that its contribution might be somehow under-

estimated. The figure below shows the vertical 

distance from origin of body-fixed coordinate 

system o to the predicted mean position of the 

natural axis of rotation (parameter h) as de-

rived on the basis of equation (3). 
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Figure 9 Predicted mean vertical position of the 

instantaneous axis of rotation. The solid line corre-

sponds to the vertical position of the centre of grav-

ity (oG). 

As the figure indicates the predicted value of h 

varies with frequency, which can be explained 

by analogy to coupled-mass system with the 

axis of rotation passing through the centre of 

mass of the system. However, for lower fre-

quencies the estimated h is larger than oG, 

which suggests negative added inertia. As by 

default added mass and inertia of mono-hulls 

must be non-negative the only reasonable ex-

planation is, assuming correctly estimated cen-

tre of gravity, that the body “slides” due to 

asymmetric pressure distribution leading to 

sway amplitudes larger than the expected 

maximum, i.e.     AA oGy sin
max

 . Should 

this proved to be the case a mathematical 

model might have been revised to accommo-

date for such behaviour.  

Conclusions 

The results presented in this paper demonstrate 

the outcome of the preliminary stage of uncer-

tainty assessment and they clearly do not pro-

vide answers to many important questions. 

Nevertheless, even such rough estimates of 

errors allow narrowing down the broad spec-

trum of problems associated with the meas-

urements and these can be addressed in detail 

in a more efficient way. Discussion on preci-

sion errors has been omitted entirely but, as it 

was shown, some of the systematic errors as-

sociated with the measurements are “preci-

sion” in their very nature with the only differ-

ence stemming from the way they are handled. 

It should also be emphasised that the conclu-

sions, as far as sway contribution is concerned, 

are valid for the particular case tested but their 

generalisation should be approached carefully. 

It is possible that for a more realistic, in terms 

of GM, example the sway damping and added 

mass might have more significant impact on 

the roll motion hydrodynamics. This is even 

more important as the present error estimates 

do not explain the divergence of the experi-

mentally derived coefficients from the theo-

retical prediction for the very low frequencies 

and therefore prove only that such discrepan-

cies cannot be solely justified by inaccuracy of 

measurements. 
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