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ABSTRACT  

Modern information technologies enable a radically different approach to research on the dynamical 

behavior of complex marine objects. In order to utilize high-performance computational architec-

tures effectively, it is necessary to consider alternative approaches to the mathematical formulation 

of these problems. In particular, new statements of a problem can be formulated which were sense-

less earlier, but now appear effective with these computational environments. This paper considers 

the problem of code development, based on potential flow formulations. It is shown that a new ap-

proach for obtaining the pressure-field in time-domain simulations could be very effective for long-

term risk assessment.  
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INTRODUCTION 

Long-term risk estimation for operations in 

various regions of the Ocean demands the reli-

able consideration of the behavior of objects in 

specific sea areas during particular seasons, or 

periods, of operation. An integrated approach 

for the description of external excitations, on 

the basis of spectral approximations which ac-

count for a small amount of characteristics 

(more often in this aspect significant wave 

height and less often the average period is also 

considered), can result in the underestimation 

of risk and the loss of essential features of the 

estimated region. It is quite clear that the wind 

wave spectrum, with a particular significant 

wave height, will vary both for geographic lo-

cation (e.g Black Sea and North Sea), resulting 

in different responses for the same object. Even 

greater variability result if we consider the 

wave regime – storm characteristics, superposi-

tion of different wave systems, alternation of 

storms and quiet weather, etc. The qualitative 

consequences of failing to consider these cha-

racteristics are shown in Boukhanovsky et al. 

(2000).  

However, earlier risk estimation methods, from 

probability theory, and forecasting of rare 

events were applied exclusively. Statistical data 

were used only to provide estimations of one or 

other likelihood characteristics (moments, cor-

relations, laws of distribution). The continued 

development of powerful computer resources 

allows one to consider alternative approaches 

to this problem. Such resources enable the con-

sideration of these problems from other ap-

proaches than just the traditionally known ma-

thematical methods. Now, the absolutely sepa-

rate direction of complex problems may be 

considered to obtain solutions. Mapping of the 

problems onto particular computer architec-

tures, especially parallel or distributed, dictates 

which methods are appropriate for a specific 

problem decision. Compared to traditional rea-
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soning approaches (consecutive and analytical) 

this may seem a little bit unusual. Let us con-

sider the general approach to the problem of 

computing the long-term pressure distribution 

under the wave surface, in both the spatial and 

time-domain. 

STATEMENT OF THE PROBLEM  

The most general description of behavior of a 

sea object under the action of waves may be 

obtained by solving the Navier-Stokes equation 

with traditional boundary conditions on the 

wave surface and the submerged portion of the 

body. Because the formation of waves is prac-

tically completely determined by gravitational 

forces, and the influence of viscosity is impor-

tant to consider close to a surface of a body, in 

naval hydrodynamics potential flow formula-

tions are traditionally used. 

Let us follow the assumption that wave motion 

is irrotational and can be described by only the 

wave potential. In this case, the general prob-

lem is formulated by the following equation 

and boundary conditions: 
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where (x,y,t) is the free surface,  is the wave 

potential, and p0 is the atmosphere pressure 

The determination of the spatio-temporal dis-

tribution of the potential (to be exact, its de-

rivatives) around the investigated object 

enables the determination of the field of hydro-

dynamic pressures, which when integrated on 

the body gives the forces and moments neces-

sary for modeling ship behavior. 
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where S0 is the wetted ship surface, n is the 

outward normal vector, and r = {x0,y0,z0} is a 

radius-vector of the wetted ship surface. 

Eq. (1) is the linear problem with nonlinear 

boundary conditions and an unknown boun-

dary. The last aspect makes the problem very 

difficult. 

Therefore, the general solution for the potential 

is obtained only in some special cases, and first 

of all only for a sinusoidal wave. Accounting 

for the randomness of waves makes the analyt-

ical solution of the potential for a stochastic 

problem practically useless for applications in 

problems of naval hydrodynamics.  

In both cases the unknown border,  (x, y, t), is 

defined in the process of the problem solution. 

For example, in the linear definition of the 

problem 

tg 







1
t)y,(x, , 

where the derivative of the potential with re-

spect to time is considered on an unperturbed 

wave surface. Therefore, in practice other ap-

proaches are applied.  

COMPUTATIONAL APPROACH: MAPPING 

OF THE PROBLEM 

On the other hand, the problem (1) could be 

seriously simplified if the spatio-temporal rea-

lization of random wave field is known a pri-

ori. From the analytical point of view, it does 

not give any special advantages, but for direct 

modeling it permits the development of effec-

tive computing procedures. The question of 

reconstructing random spatio-temporal wave-

fields depends on its hydrodynamic adequacy, 

i.e. the waves simulated by any others means 

should fit the physical laws presented in prob-

lem (1). At the same time, such a wave model 

should be effective from computational point-

of-view and enable one to reproduce not only a 
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stationary wave process, but also the evolution 

of waves in time. 

We can consider as one of criteria for assessing 

the hydrodynamic adequacy of the generated 

random wave-field, corresponding to natural 

observations, the statistical wave characteristics 

which are not used as input data for the wave 

generation procedure. For example, if we use 

the correlation surface only, its frequency di-

rected spectrum, for free-surface generation, 

after statistical processing of the model realiza-

tion we should obtain both the higher moments 

and laws of distribution for the other wave 

elements. 

It has been shown that it is possible to obtain 

such a result in the specification of a model us-

ing the classical scheme of autoregression – the 

moving mean (Davidan 1988; Rozhkov and 

Trapeznikov 1990). Such a wave model is in 

the form of a class of linear differential systems 

with distributed parameters and a random input 

signal of type of a field of white noise: 
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where L, Q are differential operators. 

Stationary solutions of the differential equa-

tions of type (2) define a class of random fields 

with the generalized rational spectral density: 
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Thus it is possible to show that the model of 

three-dimensional waves, traditionally put into 

practice offered by Longuet-Higgins, 

represents model of a moving mean. Therefore, 

in the limiting case, both of the considered ap-

proaches could be considered as equivalent. 

However, the field model of moving mean has 

weak convergence. Because of computing dif-

ficulties for the application of Longuet-Higgins 

model for sea waves generation (especially 

three-dimensional), the combined model of au-

toregression can be used to establish a nonli-

near procedure for parameter assessment.  

Therefore, the field autoregressive model is 

more attractive, and can better characterize the 

processes. It is known, that the procedure of a 

moving mean is the best way which is applica-

ble for processes with uniform spectral density, 

whereas autoregression model is more suitable 

for processes with strongly pronounced peaks 

(Box and Jenkins 1970).  

For the proper development of a computing 

process for the model, it is necessary to transi-

tion from a continuous model to a model with 

discrete arguments. So, for example, a finite-

difference equation of wave can be defined as 
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where (i,j,k) are generalized coefficients of 

autoregression and (x,y,t) is a field of white 

noise. 

Procedures for autoregression parameters and 

the variance of white noise field assessment are 

developed based on a generalized Yule-Walker 

equations system: 
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The variance of the white noise field can be 

determined from equation (5), when i,j,k=0: 
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It is possible to see from (4) that the autore-

gressive model is capable of modeling ergodi-

cally, at minimal computing expense, a period-

ic realization of a random process, which its 

stochasticity is limited only by the period of the 

pseudo-random number generator. Additional-

ly, the model does not use the property of the 
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likelihood of convergence, Gaussian assump-

tion, as, for example, Longuet-Higgins model 

or other known models. It allows effective ap-

plication to the research of extreme events, 

both in oceanography, and in naval hydrody-

namics. It is also important that, on the basis of 

linear inertial transformation, the model can be 

used to easily construct nonlinear inertia-less 

transformations to any law of distribution. 

In Degtyarev and Boukhanovsky (1996) it is 

shown that this model is hydrodynamically 

adequate, as compared to natural conditions. 

For the verification of the field autoregressive 

model, a series of tests for complete analysis of 

wind and complex sea has been carried out. In 

addition, the analysis of wind-wave evolution 

in storm and with spatially non-uniform current 

was carried out. The latter showed that the au-

toregression model, together with nonlinear 

inertia-less transformation (Degtyarev and 

Boukhanovsky 1996; Boukhanovsky et al. 

2000) can successively reproduce nonlinear 

wind-waves when the distribution law of ordi-

nates is distinct from normal. 

As a test, simulated aerial images were used 

(Degtyarev and Boukhanovsky 1996). Statis-

tical characteristic of the visible waves were 

used for verification. The criterion of verifica-

tion was the agreement of the cdf and the joint 

distributions and conditional moment curves 

between the measured waves and simulated 

waves. 

0 0.5 1  

Fig. 1: Regression of lengths and heights of waves.  – model, 

line – experiment 

All experimental results concerning the distri-

butions of visible wave’s elements have been 

confirmed. In particular, the characteristic form 

of a curve of the conditional variance of wave-

lengths from their heights (Fig. 2) has been 

presented. Such agreement cannot be achieved 

by any of known ways of wave modeling, in-

cluding the Longuet-Higgins model. 

0 0.1 0.2  

Fig. 2: Scedastic curve of lengths and heights of waves  

Modeling of a complex sea has also been car-

ried out. Some variants of wind-waves and sys-

tems of swell have been investigated. It is 

shown that the distribution law of the wave pe-

riods of a complex sea, represents a combina-

tion of Weibull laws with various parameters 

(Rozshkov 1990). The number of elements of a 

combination is equal to the number of wave 

systems. For the usual wind-waves distribution 

law of periods, the solution is well-smoothed 

on a grid, using a Weibull law with k=3, how-

ever at narrowing, a spectrum parameter of dis-

tribution law increases, approaching 4. 

0 1 2 0 1 2  

Fig. 3: Spectrum with two swells and distribution of wave pe-

riods  

On the basis of the obtained results, it is possi-

ble to discuss the high physical adequacy of the 

presented model of sea waves on quasi-

stationary time-domain. In Fig. 3, one of the 
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interesting examples of three investigated wave 

systems is shown. 

To analyze the abilities of the model to gener-

ate a non-stationary wave-field, we considered 

a number of storm types. As the first, Hurri-

cane "Belief" (Davidan 1988), which took 

place in the central part of the North Atlantic 

on September 2-6, 1966 was chosen.  

Besides the model of non-stationary, the wave-

field on a longer time interval: July 5-17, 1986 

(Rozhkov 1990) has also been verified. The 

interval of wave evolution has been broken into 

thirty-six 8-hour sites, where each had waves 

that were assumed as quasi-stationary. The 

evolution of the average wave height during a 

storm is shown in Fig. 4. The strong agreement 

between experimental measurements and the 

model results is encouraging for the ability of 

the model to produce high quality results in a 

range of synoptic variability. 

Fig. 4: Diagram of average wave height variation during hurri-

cane "Belief"  

All these results inspire confidence that this 

effective computing procedure allows us to 

generate a hydrodynamically adequate wave 

surface, and also possesses the ability to evolve 

the solution in time. 

For the description of such transformation, it is 

necessary to address questions of wave-weather 

scenario modeling. Some details related to this 

question were presented at the Stability Work-

shop in 2005 (Degtyarev 2005). During the 

evolution of sea waves, the spectral density 

randomly varies in time, i.e. for description of 

such an evolution the spectral density should 

be represented by a stochastic function. One of 

the ideas formulated in Degtyarev (2005) con-

sists of the parameterization of S(). In this 

case, we consider it as a deterministic function 

with a set of random variables: 

 

),,(  SS  (7) 

 

The feasibility of an approach like (7) obvious-

ly depends on the level of accuracy used to 

specify the spectrum Sp(,This may be 

specified by the parameters p taken from their 

multidimensional distribution F()

In the present study, parameters of the spec-

trum related to wave height, spectral shape, the 

frequency of the spectral peak, max, and the 

main wave direction, max, are selected as pa-

rameters in . The single field model spectrum 

may be formulated 
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where 
r  signifies the rest of the parameters. 

More general spectra, S(,θ are obtained as 

 
























N

p

r

p

pp p
SmS

1

max00 ,,),(  (8) 

 

where m00, the 0
th

 moment of the spectrum, is 

equal to the total variance of wave field, N is 

the number of wave fields (peaks in the spec-

trum), and p are weight factors for each system 

so that, 1
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Using this approach, a procedure for a standard 

wave weather classification was developed 

(Boukhanovsky et al. 2000, Degtyarev 2005). 

A time-series of wind-wave heights in the mid-

latitudes and subtropical areas of the World 

Oceans can be used as alternating sequences of 

storms and weather windows. We define a 

storm of duration  and intensity h
+
 as a situa-

tion when random function h(t) exceeds a pre-

defined value Z. The period  during which 

the wave height is less than this threshold, will 

be called a weather window of intensity h
–
. The 

parameter  shows the asymmetry of the storm:  

=(tp–tb)/

tb, tp , te are times of storm start, the maximum, 

and the end, respectively. Fig. 5 clarifies these 

definitions. 

Such a parametrization of wave evolution per-

mits one to simulate variations of the spectrum 

parameters in (7). Examples of procedures of 

storms classification for specific regions are 

shown (Boukhanovsky et al. 2000, Degtyarev 

2005, Belenky and Sevastianov 2007). The uni-

form approach to waves, modeling (2) - (4), 

and its evolution, permits one to develop a set 

of nested autoregressive models for generation 

of continuous realization of spatio-temporal 

wave-field, in a given region of the Ocean. 

At the quasi-stationary and synoptic intervals 

of variability, the wave process is best de-

scribed by the stationary auto-regression model 

AR(p) of order p, namely  
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where k are coefficients to be computed using 

the correlation function K(), and t is white 

noise with a given distribution function, which 

has to be compatible with the nonlinear func-

tional transformation () of function t into, 

respectively, the Rayleigh or log-normal distri-

bution of t. In Lopatoukhin et al. (2001) it is 

shown that a stationary pulse-like random 

process is a good model for a sequence of 

storms and fair weather intervals. 

The actual generation of a series of random 

storms and weather windows is based on a 

Monte-Carlo approach. Thus, it becomes pos-

sible to reproduce the whole variety of values 

of {h
+
, h

–
, , }:  
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Here  )(k

i denotes a system of four pseudo 

random numbers. 

A stochastic model for extra-annual rhythms 

could be written as follows: 

 

.(t)=m(t)+(t)t (11) 

 

Here m(t) and (t) are periodic functions, and  

t is a non-stationary process AP(p) so that  
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and the coefficients k(t)=k(t+T) are periodic 

functions of time.

A model that is capable to describe year-to-

year variability of the monthly mean wave 

heights will therefore require twelve values of 

m(t) and 78 values of K(t,). It is possible to 

reduce the number of dimensions by consider-

ing the following representation of periodically 

correlated stochastic processes (PCSP): 
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So with the help of such nested autogression 

models, it is possible to reconstruct conditions 

of a hypothetical (artificial) weather scenario, 

at a specific location of interest. The idea is to 

look at a situation that did not yet happen, but 

in principle, can happen. 
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CONCLUSION 

 One of the most promising applications 

of the autoregression model is for advanced 

hydrodynamic codes. These codes are tradi-

tionally based on potential flow and external 

models for vortex and viscosity forces. They 

use Longuet-Higgins model for wave eleva-

tions and pressures, which put a limit on the 

length of irregular wave realizations that can be 

efficiently used for simulations. Another limi-

tation is for the modeling non-stationarity. The 

latter one may be especially important for dy-

namic stability, as growing seas increase the 

probability of encounter for steep waves, which 

may represent significant danger, in terms of 

roll motions. The application of the autoregres-

sion model naturally solves both problems. As 

it was shown, the autoregression model offers a 

very natural way to present non-stationarity. 

However, for use of the autoregression model 

in a potential hydrodynamic code, wave pres-

sures also need to be evaluated. Several options 

can be considered for pressures. The most natu-

ral way is to use formulation (1). The autore-

gression model of wave elevations becomes the 

boundary condition. Another option is use 

autoregression model itself for the pressures as 

well. In the latter case, it needs to be related 

with the wave elevations and a given spectrum. 
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