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ABSTRACT  

 The paper describes a method for the direct assessment of the probability of partial stability 
failure for an intact ship. The method is essentially a statistical extrapolation, allowing explicit 
account of influence of nonlinearity of GZ curve on roll distribution. It is achieved by using a 
Peaks-Over-Threshold method for extrapolation. The method is also capable of simultaneously 
treating large port and starboard roll angles. To avoid possible inapplicability of Poisson flow, an 
envelope approach is used. A partial stability failure is associated with the upcrossing of the 
dangerous level by the envelope. The proposed method is called “Envelope Peaks over Threshold” 
(EPOT). Application of EPOT is demonstrated with simulated wave elevations. 
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INTRODUCTION 

The main principle that allows solving the 
problem of rarity is separation.  Instead of one 
problem with very rare events, two or more 
related problems are considered: “non-rare” 
and “rare”.  The “non-rare” problem is crossing 
a threshold that is low enough that a 
statistically significant number of crossings can 
be observed in a model test or numerical 
simulation.  The “rare” problem is a statistical 
extrapolation of the data above this threshold, 
see Figure 1.  

Nonlinearity is accounted for by separating 
small and large-amplitude motions with the 
threshold.  If any sort of statistical fit is used on 
roll motion data in its entirety, the resulting fit 
will be dominated by the small-amplitude 
motions where the roll motion is still relatively 
linear, and the influence of nonlinearity will 
generally be not represented properly.  The 
threshold must therefore be high enough, so 
that the influence of nonlinearity above that 
threshold can be considered substantial.  It 
cannot be chosen based purely on statistics.  
Physical considerations based on the shape of 
the GZ curve must be included as well, 
however setting particular limits on a threshold 

is outside of scope of this paper; these limits 
are  assumed to be given. 

 

 
Figure 1 Summary of the current method: separation 

principle 

BOTH-SIDES CROSSING 

 Partial stability failure in a form of a 
large roll event is equally dangerous on either 
side of a ship.  Therefore, a random event of 
upcrossing is not yet a complete model of 
partial stability failure.  A complete model of 
the partial stability failure should include both 
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upcrossing of a specified level on the positive 
side and downcrossing of the specified level on 
the negative side.  This random event can be 
written as: 

     
    bdttbt

adttatX




)()(

)()(



  (1) 

 Here X is a random event associated 
with partial stability failure; a is a positive 
level of exceedance and b is negative level of 
exceedance.  Obviously, if the mean value of 
roll is zero and requirements are the same for 
the both sides: 

   bamif  0)(  (2) 

If the distribution of the roll and roll rate 
are symmetric, the rate of both-sides crossings 
can be expressed as: 
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In particular, for the generic normal process 
x(t): 
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Where Vx is the variance of the process and xV   

is the variance of it derivative.  

 The random event of both-side crossing 
does not follow Poisson flow, as the 
independence condition is difficult to meet. 
The autocorrelation function will not die out 
during the half a period; so if there was an 
upcrossing through the positive thresholds, the 
downcrossing through the negative threshold is 
more likely. 

ENVELOPE APPROACH 

The ability to apply Poisson flow is 
important, as it is difficult to provide an 
explicit relationship with time outside of the 
Poisson flow assumption.  Belenky & Breuer 
(2007) used the envelope of the roll process to 
overcome similar difficulty while dealing with 
parametric roll; such a process usually has a 
very narrow spectrum. The narrow spectrum 
results in significant clustering (or grouping) of 

the high peaks. As a result, even one-sided 
upcrossings become dependent on neighboring 
cycles, as once upcrossing occurs, it is very 
likely that it will occur again on the next period 
of motion.  

The envelope a(t) is defined as 

 22)( ta  (5) 

Where  is a complimentary process that 
can be obtained with Hilbert transform. 

An additional difficulty here is that the 
spectrum of roll motions is not necessarily 
narrow and the envelope cannot be considered 
as a slowly changing function. In some cases 
this can result in the envelope peaking higher 
than the process itself (due to the behavior of 
the complimentary process).  The envelope can 
then cross the level of interest while the 
process does not, see Figure 2.  

To avoid this artificial crossing, the 
piecewise linear approximation of the envelope 
is used, also shown in Figure 2. Values for this 
“peak-based” envelope are calculated using 
linear interpolation between the absolute values 
of peaks or zero-crossing peaks of the process. 
Using absolute values ensures that both-sides 
crossing are taken into account as opposed to 
just upcrossing. This approach is also helpful 
while dealing with relatively narrow-banded 
processes, such as ship motion in following and 
stern-quartering seas. 

 
Figure 2.  Zoomed in envelope (blue) peak-based or 

piece-wise linear approximation of the envelope (red) 

evaluated for wave elevations (Bretshneider spectrum at 

typical sea state 8) 
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ENVELOPE PEAK OVER THRESHOLD  

The main challenge that the problem of 
rarity poses comes from the nonlinear nature of 
large-amplitude roll motions. It is well known 
that large-amplitude roll motions cannot, in 
general, be characterized by normal 
distribution (Belenky & Sevastianov, 2007).  
The type of distribution depends strongly on 
the shape of the ship’s righting arm curve, 
which may change significantly in waves.  It is 
also difficult to fit a distribution with simulated 
or measured data; because only the large-
amplitude motions carry information on the 
nonlinearity of the motion and they are rare. 

 For the same reason it is also difficult to fit 
the extreme value distribution.  Because the 
dynamical system possesses significant 
nonlinearity, any statistical fit based on all the 
data may be misleading, as these data may be 
dominated by relatively mild nonlinearity. The 
resulting distribution fit may not reflect the 
physical properties of the dynamical system for 
large displacements.  

 The envelope-peaks-over-threshold method 
enables the implementation of the principle of 
separation and avoids the inapplicability of 
Poisson flow. Then, the probability of at least 
one large roll event during time T is as follows: 
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Here  is the rate of upcrossing through the 
threshold a1, while a2 is the level of stability 
failure. 

The objective of the non-rare problem is 
finding the rate of upcrossing,  of a given 
threshold, a1, by the peak-based envelope. The 
objective of the rare problem is to find 
conditional probability, )|( 12 aaP  , that 
the envelope exceeds the level of partial 
stability failure, a2, once a given threshold, a1, 
is crossed. 

 The value of the threshold plays an 
important role in separating small and large-
amplitude motions.  The threshold must 
therefore be high enough, so that the influence 

of nonlinearity above that threshold can be 
considered substantial.   

NON-RARE PROBLEM 

The most direct way to estimate upcrossing 
of the peak-based envelope is direct counting; 
then the mean number of events can be 
estimated as: 
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Where NUj is the number of events observed 
during record j. The estimate of rate of 
upcrossing is: 

 
R

U

T

m*
*   (8) 

Where TR is duration of the record. 

The confidence interval for estimate (8) can be 
found using auxiliary random variable (Kramer 
& Leadbetter 1968): 
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If the upcrossings are independent, this 
auxiliary random variable has a binomial 
distribution with parameter p – probability that 
an upcrossing occurs in a particular time 
instant. It can be estimated as: 
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The number of upcrossings observed during 
record j can be expressed though this auxiliary 
variable as: 
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The number of upcrossings can be related 
to the estimate of the upcrossing rate. NUj is the 
sum of independent variables with a binomial 
distribution, each of which has the same 
parameter, p. This sum also has a binomial 
distribution with the same parameter p, but 
with n equal to the sum of the number of cases 
(time steps)..  In the case of NR records, the 
total number of cases becomes: 
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 nNN R   (12) 

Then, the probability that NR records, each with 
n time steps, will contain k upcrossings can be 
expressed as: 
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Formula (13) also can be interpreted as the 
probability mass distribution for the number of 
upcrossings for all the records. The number of 
upcrossings k is related to the estimated rate of 
upcrossing as: 
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 Boundaries of confidence interval for * are 
expressed as: 
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Where Q(P) is an inverse to the cumulative 
distribution function (CDF) for P(k) and  is a 
given confidence probability. Q(P) is often 
referred to as the Quantile function. 

RARE PROBLEM: DIRECT FIT 

The objective of the rare problem is to find 
the probability of the envelope crossing the 
given level of stability failure, a2, if the 
threshold, a1, was already exceeded.  This 
probability can be trivially found if the 
distribution of envelope peaks over the 
threshold is known: 

 )|(1)|( 112 aEEFaEaEP mm   (16) 

Here F(Em|Em> a1) is the CDF of the envelope 
peaks over the threshold (see Figure 3) . It can 
be found through a Weibull fit to the available 
statistical data, using the method of moments 
or the maximum likelihood method (Cohen 
1965), see Figure 4. 

Both figures use a dataset of wave elevations 
simulated with a Bretshneider spectrum for a 
typical sea state 8. 
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Figure 3 Envelope Peaks over Threshold (filled circles) 

 

 
Figure 4  Weibull Fit for Envelope Peaks over Threshold 

The width of bins for the histogram in Figure 4 
was calculated with the following formula 
(Scott, 1979): 
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Where  is standard deviation and Np is the 
number of available data points. 

Both distribution fitting methods use 
statistical data to find the parameters of the 
distribution (17). Therefore these parameters 
are random values, which mean the rate of 
upcrossing is also a random number. The 
confidence interval must therefore be evaluated 
to reflect statistical uncertainty. In fact, the 
easiest way to evaluate the confidence interval 
for the upcrossing rate is to compute it for the 
distribution (17) using the method described in 
(Belenky & Weems, 2008); sample results are 
shown in Figure 5 and Figure 6. The 
confidence interval widens as the threshold is 
raised since there are less data points available. 
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Figure 5 Weibull CDF with Confidence Interval Fitted 

for Envelope Peaks Exceeding the Threshold of 7 m 

 
Figure 6 Weibull CDF with Confidence Interval Fitted 

for Envelope Peaks Exceeding the Threshold of 9.5 m 

 As a result, it is possible to propagate 
statistical uncertainty throughout the method 
and obtain the final result (6) with a confidence 
interval.  

 A series of results for these calculations 
done for 200 simulated records of wave 
elevations of 30 min durations each 
(Bretshneider spectrum at typical sea state 8, 
with significant height 11.5 m and modal 
period 16.4 sec) was calculated for different 
threshold values and are shown in Figure 7. 

 
Figure 7 Statistical Extrapolation of Upcrossing Rate  

Figure 7 shows some variability of the 
extrapolated estimate.  As the threshold 
increases, the estimate shows some decrease, 
while the confidence interval becomes wider. 

In principle there can be two tendencies 
affecting the result. The accuracy of the 
Weibull fit is better for extrapolation if the data 
points are closer to the target, but the 
uncertainty is larger as there are fewer and 
fewer data points available. The optimum is 
achieved somewhere in the middle. Therefore 
averaging the results from different thresholds 
may be useful:  

 



1

1
1

1

)(
1 aN

i
i

a
a a

N
 (19) 

As the first expansion, averaging was also 
applied to the boundaries of the confidence 
intervals: 
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RARE PROBLEM: EXTREME VALUE FIT 

 The solution of the rare problem involves 
the evaluation of the probability using the tail 
of the distribution. Difficulties with predicting 
the behavior of the tail of fitted distributions 
are not new.  These difficulties were one of the 
motivations for the development of extreme 
value theory; therefore it is quite logical to try 
to use extreme distributions for the rare 
problem.  In its classic interpretation, the 
extreme value distribution describes 
probabilistic properties of an extreme value 
observed during a given time.  

 To fit an extreme value distribution a time 
window TW is introduced; the largest value 
observed during this time represents one data 
point, see Figure 8. 

 The Weibull distribution can be fit using 
these data points. The resulting distribution 
will be a conditional distribution, as only points 
above the given thresholds are used. By the 
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definition of the cumulative distribution 
function: 

 ),|(),|( 1212 WWEV TaEaEPTaaF   (21) 

 

 
Figure 8 Data Points for Extreme Value Distribution of 

Envelope 

 The probability of exceedance of the level 
a2 during time T is expressed as: 
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Here P(E>a1|TW) is the probability of at least 
one exceedance of the given threshold, while 
P(E>a2| E>a1 ,TW) is the conditional probability 
of an exceedance of the level a2 once the 
threshold a1 has been crossed. The latter is a 
probability of a random event, complimentary 
to (21) and therefore it can be expressed 
through conditional CDF as: 
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 The probability of at least one exceedance 
of the given threshold can be expressed using 
Poisson flow, as the rate of upcrossing through 
the threshold a1 is the solution of the non-rare 
problem: 
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A similar expression can be written for the 
probability of at least one exceedance (or 
upcrossing) of the level a2: 
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The rate of events  is the final objective; 
substitution of equation (23-25) into (22) 
allows expressing it through the extreme value 
CDF: 
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 Taking into account (6) the solution for the 
rare problem (independent of time of 
exposure, T) is expressed as: 
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 The result of sample calculations are shown 
in Figure 9 and, as expected, the variability of 
is less (at least visually) in comparison with the 
fit of Weibull distribution to peaks, as shown in 
Figure 7. Nevertheless using an averaging 
procedure (19-20) seems to be reasonable for 
this case as well. 

 
Figure 9 Statistical Extrapolation of Upcrossing Rate 

Using Extreme Value Distribution Fit for Rare Problem 

COMPARISON WITH THEORETICAL 
SOLUTION 

Simulated wave elevations were used as a 
numerical example. As this is a normally 
distributed process the theoretical solution may 
exist. 

However, the failure event is associated 
with an upcrossing of the peak-based envelope 
through a certain level. The probability of this 
event cannot be exactly expressed in closed 
form, as there is a subtle difference between the 
peak-based envelope and theoretical envelope 
defined by formula (5).  

Nevertheless, for a relatively high level of 
upcrossing, the difference between the 
probability of upcrossing of the theoretical 
envelope and the peak-based envelope may not 
be that significant, as a large peak of the 
process belongs to both the theoretical and 
peak-based envelopes. Therefore the first 
candidate for the theoretical solution is the rate 
of upcrossing of the theoretical envelope 
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Where 1 is the mean frequency, 2
2  is the 

second moment of the spectral area, normalized 
by the variance of the process Vx; a is the level 
of crossing. The derivation of this formula is 
trivial as the distribution of the envelope is 
Rayleigh and its derivative is normal.  

 For the very same reason, the Rayleigh 
distribution can be assumed for the rare 
solution. The upcrossing rate in the non-rare 
solution can be approximated as:  

  2
12110exp acacc   (29) 

For the purpose of numerical example the 
coefficients c0 c1 c2 are evaluated from 
statistics with a least-squares method. 

For the very large level of crossings, it may 
also be possible to use formula (4); it may be 
so rare that crossing occurs only on one side. 

 All three these theoretical solutions, 
nevertheless, remain approximations. However 
comparisons with extrapolation results may be 
used as a very coarse verification. The 
comparison is shown in Figure 10 and confirms 
the ability of the proposed method to yield 
reasonable predictions with statistical 
extrapolation. 

 

 

 

 
Figure 10 Averaged estimate of rate of upcrossing of the peak-based envelope extrapolated using extreme value 

distribution.  Insert shows the extrapolation for the level of 13 m using both direct and extreme value fit of Weibull 

distribution. 
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SUMMARY 

 The EPOT method offers several advances 
in the context of the direct assessment of partial 
stability failure.  The use of the data exceeding 
the threshold accounts for the non-linearity of a 
ship’s roll motion as the linear portion of the 
response does not dominate the distribution fit.  
Use of the envelope handles both port and 
starboard rolls ensuring the applicability of the 
Poisson Flow. The envelope also accounts for 
the dependence of subsequent roll cycles; this 
is important for narrow banded processes, such 
as roll motion of a ship operating in following 
and quartering seas.   

The EPOT method can be used for the direct 
assessment of stability failures for ships.  It 
may be used with simulation data as well as 
model tests data. 

The EPOT method is still under development.  
Future work includes evaluating the 
performance of the algorithm when non-
linearity of the roll response becomes severe, 
such as happens near the peak of the righting 
arm curve.   
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