Melnikov’s Method Applied to a Multi-DOF Ship Model

Wan Wu,

Leigh S. McCue,
Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

ABSTRACT

In this paper, a coupled roll-sway-heave model derived by Chen et al (1999) is studied. In order to address the small damping constraint, the extended Melnikov’s method for slowly varying system is used by assuming the damping term is large. Using the extended Melnikov’s method, the critical wave amplitudes are calculated. A phase space transport method has been applied. The ratios of erosion safe basin areas have been calculated based on the Melnikov’s method and were compared with the results from numerical simulations.

KEYWORDS

Multi-DOF Melnikov; Slowly-varying; Ship; Stability.

INTRODUCTION

Six degree of freedom (DOF) vessel motion problems exhibit numerous complexities, particularly when studied analytically. Most previous work on multi-DOF vessel motions either reduced the problems to lower (one or two) DOF problems or used numerical simulations. In the work of ship motion analysis, compared to 1DOF problems, relatively little work have been done using analytical methods for multi-DOF ship motion problems.

In this paper, the extended Melnikov’s method (Salam, 1987) is applied to a roll-sway-heave coupled ship model derived by Chen et al. (1999). By changing the coordinates and applying the singular perturbation technique, Chen showed the model can be simplified to a slowly varying system with three variables, which contain roll displacement and roll velocity as the fast varying variables and a slowly varying variable. This kind of system can be manageable using the Melnikov’s method discussed by Wiggins and Holmes (1987, 1988). But similar to the planar Melnikov’s method, the constraint of this method is the small perturbation assumption. In order to address this constraint, the extended Melnikov’s method for slowly varying systems is applied. The extended Melnikov’s method developed in the literature by Salam (1987) has been recently applied to ship motions problems such as capsize (Wu and McCue, 2007, 2008, Wu, 2009) and surf-riding (Wu et al. 2010 and Wu 2009). The purpose of this work is to show the possibility of applying the extended Melnikov’s method to multi-DOF ship models.

MATHEMATICAL MODEL

The equations of motion for the coupled roll-sway-heave model in the earth-fixed coordinate system can be expressed in Eq.(1)

\[\begin{align*}
 m\ddot{y} &= Y \\
 m\ddot{z} &= Z \\
 I_{zz}\ddot{\phi} &= K
\end{align*} \]

in which, \(m \) is the mass of the ship, \(y, z, \) and \(\phi \) are sway displacement, heave displacement and
roll displacement, respectively. \(Y, Z \) and \(K \) are
generalized forces. The prime denotes the derivative with respect to time \(t \). Chen et al.
(1999) transformed the model to a wave-fixed coordinate, in which the ship is viewed as a
particle riding on the surface of the wave. The sway motion is now parallel to the local wave
surface and the heave motion is perpendicular to the local wave surface. The equations of
motion now can be expressed as in Eq.(2).

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= f_1(x_1, y) + \varepsilon g_a(x_1, x_2, y, z_1, z_2, \tau) \\
y &= \varepsilon g_b(x_1, x_2, y, z_1, z_2, \tau) \\
\varepsilon \dot{z}_1 &= z_2 \\
\varepsilon \dot{z}_2 &= f_2(z_1, z_2) + \varepsilon g_c(x_1, x_2, y, z_1, z_2, \tau)
\end{align*}
\]

where \(x_i = \phi \), \(x_i = \phi' \), \(z_i = z_0 / h \) in which \(h \) is
the draft of the ship. \(y \) is a transformed
coordinate which contains sway velocity and
other variables. \(z_0 \) is small compared to \(h \). \(\varepsilon \) is
the derivative relative to \(\tau \), where \(\tau = \omega _r t \).
\(\omega _r \) is the natural frequency of roll.

In Eq.(2), the heave motion is considered to
emit fast dynamics compared to roll and \(y \).
Chen et al. (1999) used the singular
perturbation theory to this system to show that
\(z_1 \) and \(z_2 \) can be solved from the steady state
equation and can be substituted into the slow
dynamics. The dynamics of the whole system
Eq.(2) can be represented by the reduced
system Eq.(3).

\[
\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= f_1(x_1, y) + \varepsilon g_a(x_1, x_2, y, \varepsilon, \tau) \\
y &= \varepsilon g_b(x_1, x_2, y, \varepsilon, \tau)
\end{align*}
\]

Chen et al. found that for the reduced system in
Eq.(3), roll motions are the fast varying
variables while \(y \) is the slowly varying
variable. Systems like this are called slowly
varying systems. When \(\varepsilon = 0 \), this is simply
the planar roll motion with zero forcing and
zero damping. When \(\varepsilon \) is a small positive
number, the \(y \) motion (which includes sway
and other motions) becomes relevant. Because
the sway motion is stable, the system will trend
towards the invariant manifold of roll
dynamics.

THEORETICAL BACKGROUND

Melnikov’s Method for Slowly Varying Systems

Melnikov’s method is one of few analytical
methods that can be used to predict the
occurance of chaotic motions in nonlinear
dynamic systems. Melnikov’s method has been
applied to a number of ship dynamics
problems, such as capsise in beam seas
(Falzarano, 1990) and surf-riding in following
seas (Spyrou, 2006). Most of these are treated
as single DOF problems. Melnikov’s method
for multi-DOF problems has been introduced in
several references including the works of
Wiggins and Holm (1987, 1988), who
derived the Melnikov’s function for slowly
varying system in Eq.(3).

When \(\varepsilon = 0 \), the unperturbed system in Eq.(3)
has a planar Hamiltonian, which contains a
homoclinic (or heteroclinic) orbit. The
Melnikov’s function for this system is

\[
M(t_0) = \int_{-\infty}^{+\infty} (\nabla H \cdot g)(q_0(t), t + t_0)dt
\]

\[
-\frac{\partial H}{\partial z}(y(z_0)) \int_{-\infty}^{+\infty} g_b(q_0(t), t + t_0)dt
\]

\(g = [0, g_a, g_b] \). \(H \) is the Hamiltonian for the
unperturbed system. \(q_0(t) = (x_1, x_2) \) is the
coordinates of the homoclinic orbit for the
unperturbed system. And \(\cdot \) is the dot product.

**Melnikov’s Method for Slowly Varying Systems
with Large Damping**

When the damping term is assumed to be large,
it is grouped in the unperturbed system.
Therefore, the unperturbed system is no longer Hamiltonian due to the presence of x_2 in \tilde{f}_1.

\begin{align}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= \tilde{f}_1(x_1, x_2, y)
\end{align} \tag{5}

The homoclinic orbit, which is essential in the formation of Melnikov’s function, disappears as well. Since the homoclinic orbit does not arise naturally, it has to be created artificially. Eq.(3) is then written in the form of Eq.(6).

\begin{align}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= \tilde{f}_1(x_1, x_2, y) + \varepsilon \tilde{g}_a(x_1, x_2, y, \varepsilon, \tau) \\
y &= \varepsilon g_a(x_1, x_2, y, \varepsilon, \tau)
\end{align} \tag{6}

The Melnikov’s function for this system is

$$M(t_0) = \int_{-\infty}^{\infty} \tilde{x}_2 \tilde{g}_a(q_0, t + t_0) \exp\left[-\int_0^t a(s) ds\right] dt + \int_{-\infty}^{\infty} \tilde{x}_2 \frac{\partial \tilde{f}_1}{\partial y} g_a(s + t_0) ds \exp\left[-\int_0^t a(s) ds\right] dt$$ \tag{7}

in which, $\tilde{q}_a(t) = (\tilde{x}_1, \tilde{x}_2)$ is the coordinates of the new homoclinic orbit of Eq.(5). $a(s)$ is the trace of the Jacobian matrix of Eq.(5). If the unperturbed system in Eq.(5) is Hamiltonian, $a(s) = 0$. Eq.(7) can be reduced to the same form as Eq.(4).

Phase Space Transport

As mentioned earlier, the unperturbed system of Eq.(3) has a planar homoclinic orbit, which contains a stable manifold and a unstable manifold. Wiggins and Holmes (1987) pointed out that when ε is small enough, the perturbed system is ε-close to the local unperturbed manifolds in a small neighborhood. Outside of this region, the perturbed manifold is ε-close to the unperturbed manifold in finite time. The theory of phase space transport for planar systems is applied here to predict the safe region erosion in finite time.

For the unperturbed system, the inside of the homoclinic orbit is the safe region. When the homoclinic orbit is perturbed, the manifolds will intersect resulting in *lobes*. And some initial conditions initially inside the safe region may be outside the safe region for the perturbed system (pseudo-separatrix) after some time. This phenomenon corresponds to a special lobe called *turnstile lobe* (Wiggins, 1992). The area of this lobe is given in Eq.(8) (Wiggins, 1992).

$$\mu(L_0) = \varepsilon \int_0^T M^+(t_0, \phi_0) dt_0 + \mathcal{O}(\varepsilon^2)$$ \tag{8}

in which $M^+(t_0, \phi_0)$ is the positive part of the Melnikov’s function, L_0 represents the lobe, t_0 is the parameter in the homoclinic orbit $q_0(t_0)$ denoting different time in the Poincaré map. ϕ_0 is the phase difference with the external forcing. T is the period of the external forcing.

Phase space transport refers to the initial conditions transporting outside the safe region after several periods of external forcing. The amount of the transported phase space can be used to show the rate of safe area erosion. Chen and Shaw (1997) derived the estimate of erosion ratio as shown in Eq.(9).

$$\rho_\varepsilon = \frac{3\mu(L_0)}{A_\varepsilon} = \frac{3\varepsilon}{A_\varepsilon} \int_0^T M^+(t_0, \phi_0) dt_0 + \mathcal{O}(\varepsilon^2)$$ \tag{9}

where A_ε is the area of the unperturbed safe region, ρ_ε is the ratio erosion area divided by the original safe region, and because ε is a small positive number, $\mathcal{O}(\varepsilon^2)$ term can be ignored. In this work, Eq.(9) is used to show the erosion of safe basin for the capsize problem.

APPLICATIONS

The data from twice capsized fishing boat *Patti-B* are used here for numerical investigation. Chen et al. (1999) proposed this model shown in Eq.(10).
\[f_1 = k_{11} - x_1 + k_{12} x_1^2 + k_{13} x_1^3 \]
\[g_a = \sigma_{a1} \cos x_1 + \sigma_{a2} \cos^2 x_1 - \delta_{a2} y - \delta_{a4} x_2 \]
\[- \delta_{a4} x_2 |x_2| - \lambda f_i(x_i) \cos \Omega t + \gamma_{a1} \sin \Omega t \]

\[g_b = \sigma_{b1} \cos x_1 - \delta_{b2} x_2 - \delta_{b2} y + \gamma_{b1} \sin \Omega t \]

\(f_i \) is the restoring moment in the roll motion, which includes the effect of bias.
\(-\delta_{a4} x_2 - \delta_{a4} x_2 |x_2| \) is the nonlinear roll damping. \(\Omega \) is the non-dimensional wave frequency. Other coefficients come from hydrodynamic forces, wind forces and wave forces.

Melnikov’s Function

The extended Melnikov’s method is applied here by assuming the roll damping terms are large. For the slowly varying system, it is essential to have a homoclinic orbit in order to calculate the Melnikov’s function (Wiggins, 1987). If the linear damping term is assumed to be large, the center in the unperturbed system will become a sink, which makes it impossible to have a homoclinic orbit. In this work, the following damping term is assumed for roll

\[B(x_2) = \delta_{a4} x_2 + b x_2^2 + c x_2^3 \]

where \(b \) and \(c \) are coefficients.

Although it is physically unrealistic to have quadratic damping term in roll, it is used here to show the possibility of using the extended Melnikov’s method to multi-DOF problems.

In order to form the homoclinic orbit for the unperturbed system, the quadratic damping term is assumed to be large. The unperturbed system is now

\[x_1 = x_2 \]
\[x_2 = k_{11} - x_1 + k_{12} x_1^2 + k_{13} x_1^3 + b x_2^2 - \delta_{a2} y \]

where \(y = \frac{\sigma_{a1}}{\delta_{a2}} \cos x_1 \) is the sway variable obtained from averaging. \(x_1 \) is the coordinate of the saddle point, which can be calculated by setting \(x_1 = 0 \) and \(x_2 = 0 \). Eq(12) contains a homoclinic orbit starting from a saddle connecting to itself, as shown in Figure 1. The solid line in the figure is the homoclinic orbit for Eq.(12), while the dashed line is the homoclinic orbit for the unperturbed system in Eq.(3) without the quadratic damping term. These two homoclinic orbits start from the same saddle point, and are close to each other. The Melnikov’s function can be calculated using Eq.(7). Numerical integration can be carried out without difficulty.

Numerical Results

Chen et al. (1999) have found the hydrodynamic and hydrostatic coefficients in Eq.(10) for Patti-B at wave frequency \(\omega_c = 0.6 \text{rad} / \text{s} \). In this work, the simulation is carried out for the case when the center of gravity has slight bias \(y_0 = 0.025 \). The wind forces are assumed to be zero. The quadratic damping coefficient is set to \(b = 0.1 \). Melnikov’s functions for both the standard and extended methods can be calculated using Eqs (4) and (7), respectively. When \(M(t_0) = 0 \), this corresponds to the critical wave amplitude \(a \) beyond which the chaotic motion and capsize may occur. The critical wave amplitude \(a \) has been calculated for both Melnikov’s methods listed in Table 1.

As shown in the table, the extended Melnikov’s method predicted the critical wave amplitude slightly higher than the standard Melnikov’s method for the case studied here.
Table 1: Critical wave amplitude for two Melnikov’s methods

<table>
<thead>
<tr>
<th>Method</th>
<th>(a) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Melnikov</td>
<td>0.1792</td>
</tr>
<tr>
<td>Extended Melnikov</td>
<td>0.1826</td>
</tr>
</tbody>
</table>

Numerical simulations are carried out to obtain safe basins of the 3DOF system with the damping terms shown Eq.(11) and with original damping term. The safe basins are calculated by integrating a grid of \(100 \times 100 \) points in roll plane with \(y, z_1 \) and \(z_2 \) initial conditions equal to 1. Every initial condition is integrated until a roll angle is greater than the angle of vanishing stability \((0.5063 \text{rad}) \), thus capsize occurs or through 10 cycles of external forcing, thus deemed safe. Capsize was checked every \(dt = 0.01 \text{s} \). Figure 2(a) is the system with quadratic damping and Figure 2(b) is the original system. In both cases, the wave amplitude \(a = 0 \).

The ratio of erosion area has been calculated using Eq.(9) for both Melnikov’s function defined by Eqs.(4) and (7). Numerical simulations are also carried out for the 3DOF system to compare the results. Chen and Shaw (1997) pointed out that in order to implement phase space transport methods, the dynamics should be studied on the invariant manifold where lobes can be defined. Therefore, similar to their work, the initial conditions for the numerical simulations have been chosen as 1720 points on the invariant manifold of roll dynamics, which are obtained by numerically calculated the safe points for the unperturbed system (basically the homoclinic orbit). Two points are picked on every direction of \(y, z_1 \) and \(z_2 \). A grid of \((1720 \times 2 \times 2 \times 2) \) points are used as the initial conditions. For the numerical data, the ratio of erosion area is calculated using the points capsized in 10 cycles of external forcing divided by the total number of points.

![Fig. 2](image1.png)

Fig. 2: Safe basins for different models (The white areas are the safe basins, and the dark areas are capsize area.) (a). Safe basin for system with quadratic damping included. (b). Safe basin for original system.

![Fig. 3](image2.png)

Fig. 3: The ratio of erosion area for different methods.

Figure 3 shows the ratio of erosion areas for different methods. The results from both Melnikov’s methods are conservative compared to the numerical simulation results. And the results from the extended Melnikov’s method are more accurate than those from the standard Melnikov’s method, especially for larger wave amplitudes. Compared to the time consuming 3DOF numerical simulations, the method of phase space transport based on the extended Melnikov’s method provides a fast way to estimate ratio of erosion with...
reasonable accuracy.

CONCLUSIONS REMARKS

In this paper, the extended Melnikov’s method has been used to a roll-sway-heave coupled model which can be reduced to a slowly varying system. In order to obtain the homoclinic orbit, a quadratic damping term is treated as large. Although it is physically unrealistic to have a quadratic term in roll damping, it is used here just to demonstrate the feasibility of the method. Coupled with the method of phase space transport, this results in a fast and effective way to estimate the ratio of erosion with apparently conservative accuracy.

This work is the first step of applying the extended Melnikov’s method to a special form of multi-DOF dynamical systems. It provides the possibility of applying the method to other multi-DOF problems in ship dynamics.

ACKNOWLEDGMENTS

This work has been supported by Dr. Patrick Purtell under ONR Grant N00014-06-1-0551 and Dr. Eduardo Misawa under NSF Grant CMMI 0747973.

References

