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ABSTRACT  

 A method using wave groups to evaluate ship response in heavy seas is presented. A ship sailing 
in a stochastic environment is difficult to model because of both the rarity and significant 
nonlinearity of the large motion responses. In the proposed method, wave groups which are critical 
to ship response are defined, separating the complexity of the nonlinear dynamics of ship response 
from the complexities of a probabilistic description for the response. In this formulation, wave 
groups may be considered as a possible method to solve the problem of rarity in a deterministic 
manner. Details of the procedure to obtain ship-specific thresholds and time-between wave groups 
are discussed. A procedure using wave groups to evaluate the probability of a rare event, the 
undesirable response, is also presented. 
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INTRODUCTION 

 Severe wave conditions present increased 
risk to ships and other ocean-going vessels. 
These large waves, in particular sequences, or 
groups, may cause structural damage or 
stability failure for a ship operating in these 
conditions. Because of its significance as a 
sequence of excitation events, a wave group 
may present a higher probability of severe ship 
structural or stability response than a single 
large wave. Therefore, they must be considered 
when modeling severe wave environments and 
when identifying operational conditions where 
there is increased risk to the vessel. However, 
these wave groups, which are most critical to 
the ship dynamics performance, may differ 
from common oceanographic definitions of 
wave groups. A critical, or dynamically 
significant event, is based on a combination of 
initial conditions, sequence of excitations, and 
the duration of excitation. For ship designers, 
operators, and researchers, the important 

practical matter remains: which waves or wave 
groups will result in a significant, or 
undesirable, ship response. 

BACKGROUND 

 Differences between wave groups, as 
considered in oceanography and in nonlinear 
ship response, are briefly discussed. A more 
detailed review of these differences can be 
found in Bassler, et al. (2010). The use of wave 
groups as a method to solve the problem rarity, 
with the possibility of experimental validation, 
is also discussed.  
Wave Groups in Oceanography 

 A wave group is defined as a series of 
waves, with wave heights larger than a 
specified threshold, and with approximately 
equal periods (Masson & Chandler, 1993; 
Ochi, 1998). Large-amplitude wave groups are 
often formed in developing seaways or by 
intersecting storms (Buckley, 1983; Toffoli, et 
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al., 2004; Onorato, et al., 2006), or due to the 
interaction effects of waves and currents. 
 Spectral shape can also significantly 
influence grouping; wave grouping increases as 
the wave energy spectrum becomes narrower 
(Goda, 1970; Goda, 1976). This spectral 
narrowing often occurs in a fetch-limited 
growing sea (Longuet-Higgins, 1976). Bimodal 
sea states, formed by wind generated waves 
and swell, are also much more likely to contain 
groups of large-amplitude waves (Rodriguez & 
Guedes Soares, 2001).  
Wave Groups and Nonlinear Ship Motions 

 Accounts of ships experiencing groups of 
large waves, such as the “Three Sisters,” have 
been reported (Buckley, 1983, 2005). Because 
they may present a more serious risk to a vessel 
than single large-amplitude waves (Kjeldsen, 
1984), groups of waves must also be 
considered in models of ship response to severe 
wave environments. 
 Su (1986) suggested that a wave group, 
with one or more extremely large waves, would 
provide a better environmental design scenario 
than a single extreme wave or a group of 
regular waves. Philips (1994) also expressed 
the need to develop a combined, spatially-
temporally-defined extreme wave group for 
ship design 
 Tools have been developed for ship design 
where wave groups are used to induce a 
specific ship motion response. This approach 
was discussed by Blocki (1980) and Tikka & 
Paulling (1990) to study parametric roll, using 
wave groups to induce parametric excitation. 
Additional studies of the applications of wave 
groups to parametric roll response have been 
made by Boukhanovsky & Degtyarev (1996) 
and Spyrou (2004). Alford has used a design 
wave train method to produce a desired motion 
response (Alford, 2008). An assessment 
procedure for parametric roll in early-stage 
ship design was developed by Belenky & 
Bassler (2009), which consists of determining 
the response to a “typical” wave group. This 
paper also attempts to address some of the 
issues related to the definition of a “typical” 
wave group. 

Wave Groups and the Problem of Rarity 

 Dangerous ship behaviors are caused by 
either extremely high or extremely steep 
waves, or a sequence of waves with particular 
frequencies. These waves, or their 
combinations, are rare and assessing their 
probability of occurrence remains a difficult 
problem. 
 Once these waves generate large excitation, 
a large-amplitude response may be expected. 
For a dynamical system that describes ship 
motions, this means that nonlinearities are 
significant for the response. If a dynamical 
system has significant nonlinearities, it 
becomes very sensitive to initial conditions. 
Depending on the initial conditions, very 
different responses may result: from merely 
tracking the contour of a large wave to 
catastrophic motions, including capsizing.  
 The main difficulty with the assessment of 
dynamically-related undesirable events, or 
dynamic “failures,” is both their rarity and 
significant nonlinearity, which need to be 
addressed simultaneously. Assessing the 
dynamical response to these wave sequences 
constitutes the general problem of rarity– when 
the time between events is long, compared to a 
relative time-scale (Belenky, et al., 2008). The 
problem of rarity may be solved by separating 
the ship response into sub-problems, according 
to their time scale. The simplest example of 
implementation using this approach is the 
piecewise-linear method for calculating 
capsizing probability (Belenky, 1993; Paroka 
& Umeda, 2006; Paroka, et al., 2006; Belenky, 
et al., 2009). The same principle was also 
applied for nonlinear response using numerical 
simulations (Belenky, et al., 2008a). 
 Consideration of groups of large waves is 
another way to separate the time scales, using 
the time between groups and the duration of a 
group. It is assumed that all important dynamic 
behavior occurs at the time while the group of 
waves passes the ship. This time is relatively 
short, and the group can be taken as a sequence 
of deterministic waves, which induce 
instability for a ship. Then the probability of 
encountering one of these critical wave groups 
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was computed for a given route and duration 
(Themelis & Spyrou, 2007; 2008). This 
approach was also used by Umeda, et al. 
(2007) for broaching assessment. 
 As a result of separating of the time scales, 
there are two problems. The first problem is 
evaluating the response of a nonlinear 
dynamical system to a group of large 
deterministic waves (the “rare” problem). The 
initial conditions of the dynamical system at 
the moment of encounter with this group are 
random. The probabilistic characteristics of 
these initial conditions must come from the 
solution of the second problem, which 
considers ship motions in less severe waves, 
during the time between the groups (the “non-
rare” problem). Then the probability of 
encounter for the ship with this critical wave 
group must be calculated. 
Model Experiments 

 One of the obvious additional advantages 
of the wave group approach over other methods 
to address the problem of rarity is that it can be 
used in model experiments, as well as 
numerical simulations. Because of this, some 
of the inherent difficulties with validation of 
ship response in random seas, which more 
closely approximate the ocean environment, 
can be addressed.  
 Completely random wave testing can be 
difficult because very long run times are 
needed to ensure extreme events with low 
probability of occurrence are realized, 
including large waves or wave groups. 
Realizations of the most severe wave 
conditions in a random seaway require long 
time durations and are generally not repeatable. 
Also, because of the temporal and spatial 
limitations of a basin, it is impractical to ensure 
the critical excitation events are realized with 
standard irregular wave model experiments.  
 A review of previous and existing 
techniques for ship motions and structural 
testing methods is given in Bassler, et al. 
(2009; 2010). An experiment was previously 
conducted to generate large-amplitude 
deterministic wave groups, with characteristics 

similar to those observed in ocean 
measurements (Bassler, et al., 2009). 

DEFINITION OF A WAVE GROUP 

 Groups of large waves present a sequence 
of environmental conditions which may result 
in severe dynamic responses of a ship, either 
for the resulting ship motions, structurally, or 
both. However, not all wave groups will be 
significant in causing a severe response.  
Therefore, the definition of a wave group must 
be formulated from the perspective of ship 
dynamics.  
 Large-amplitude response, caused by the 
wave group, is likely to be nonlinear. However, 
methods with linear approximations are only 
applicable to relatively small-amplitude 
motions. Therefore, the wave elevation or wave 
slope angle resulting in significantly nonlinear 
response may be used as a threshold for the 
“ship dynamics” definition of a wave group. 
 One of the effects of nonlinearity is the 
dependence of the response on initial 
conditions. In order to consider the response to 
a wave group encounter as a single random 
event, the response to the current wave group 
should be independent from the response to the 
previous wave group. As a result, there should 
be enough time between these groups for the 
autocorrelation function of the response to 
effectively die out. Therefore, large waves that 
are close to each other in sequence should be 
considered as part of the same group, even if 
they are actually separated by a few small 
waves. 
  A sample wave group is shown in Fig. 1. 
As observed, the first group has three waves 
and all of them are above the threshold. The 
second group has six waves, of which four 
waves are above the threshold, and two waves 
are below the threshold. This example 
illustrates the difference between the 
“oceanographic” and “ship dynamics” 
definitions of the wave group. From the 
“oceanographic” point of view, the second 
group has only two waves (III) and (IV). The 
group is preceded by a single large wave (I) 
and is followed by a single large wave (VI). 
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        (1) 

where δ is the damping ratio, e is the 
frequency of excitation, and αe is amplitude of 

l 

 
Fig. 2: Backbone curve and response curve for roll 
motion, with the ship-specific “GZ curve”, modeled 

ω/ωn 

1.4 

 

Fig. 1: Wave groups from a sample wave time-series 
realization, with specified amplitude threshold, a, and 
the time between wave groups, Δt. 

  However, from the point of view of the 
ship dynamics, all six waves must be 
considered together. Even if the wave (II) is 
small when the large wave (III) is encountered, 
the influence of the first large wave (I) still 
affects the motions. As a result, the “ship 
dynamics” wave group may have a more 
complex shape, but the encounter with a wave 
group becomes a Poisson flow event and time 
between them is expected to be distributed 
exponentially.  
 This definition of a “ship dynamics” wave 
group provides a generalized sequence of 
waves, resulting in nonlinear ship response. In 
the example shown for this paper, the threshold 
is only specified for wave crests. However, the 
same formulation may also be extended to 
wave troughs, and both the crests and troughs 
should be considered for a practical 
assessment. 

SPECIFICATION OF A THRESHOLD 

 The threshold, a, or minimum level 
resulting in significant response, may be 
different depending on which problem of 
dynamics is being evaluated and also depends 
on the relative size of the ship and the waves 
and operational conditions for the ship. Below 
this threshold, the ship response may be 
considered small, and modeled with linear 
methods. 

As a simple example to examine this 
possible definition, a 1-DOF roll equation with 
linear damping and single-harmonic excitation 
is considered, 

( )tf ee ωα=φω+φδ+φ cos)(2 2
0

&&&  

ω
VI

excitation. The nonlinear stiffness may be 
considered in a form of a cubic parabola, which 
makes the system, (1), the Duffing oscillator.  
 Consider three different amplitudes of 
excitation: α1, α2 and α3. Below a critica
response level, α1, the ship response is 
considered linear. Above this level, the system 
may exhibit some indication of nonlinear 
behavior, such as a fold bifurcation (Fig. 2). 
The Duffing oscillator is the simplest 
dynamical system capable of producing a fold 
bifurcation (Guckenheimer & Holmes, 1983; 
Thompson & Stewart, 1986; Spyrou, 1997). 
One of the justifications for such a definition is 
that the fold bifurcation for roll motion has 
been observed experimentally (Francescutto, et 
al., 1994).  
 

using the Duffing oscillator. The transition between 
linear response, α1, and nonlinear response, α2 and α3, 
where fold bifurcation is observed, is identified. 

 In this formulation, the amplitude of the 
wave slope that enables fold bifurcation to 
occur can be considered as the threshold, a, in 
the definition of the “ship dynamics” wave 
group. However, within the conceptual 
framework of this approach, other definitions 
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AVE GROUPS 

 The time between wave groups, Δt, which 

 

 

for significant events should be considered and 
examined as well. 

TIME BETWEEN W

can result in significant response events should 
be long enough so that these events can be 
considered independent. There are two reasons 
for this definition. First, by allowing enough 
time to pass between wave groups, the initial 
conditions for the wave group response become 
an objective of the “non-rare” problem and can 
be evaluated using, for example, frequency 
domain techniques. Second, it allows for the 
application of Poisson flow to the large 
response event caused by excitation from the 
wave group. The latter is very important, 
because it allows an explicit relation between 
the probability of failure and time of exposure. 
 To determine Δt, an autocorrelation
function of roll response may be used. Because 
the time between groups is associated with 
small-amplitude response, the autocorrelation 
function, r(τ), can be easily computed from the 
response spectrum, available from the 
frequency domain calculations. 

( ) ∫
∞1

φ ωω=τ
0

)cos( dtS
V

r   (2) 

where Sφ is the roll response spectrum and V is 

 

the variance. The cross-correlation function, 
c(τ), is defined as: 

( ) ∫
∞1

φ ωω=τ
0

)sin( dtS
V

c  (3) 

and used to obtain the envelope, e(τ), of the 

 

autocorrelation function of roll. 
22 τττ += )()()( cre  (4) 

Using the envelope of the autocorrelation 

 
Fig. 3: Autocorrelation function of ship response, with 

  

PROBABILITY OF FAILURE DUE TO 

 Assuming that Poisson flow is applicable to 

function, a time can be identified when the 
autocorrelation function has decreased below a 
specified value, such as 5%. For the notional 
example presented (Fig. 3), the autocorrelation 
function for roll response from a Bretschneider 

sea state 8 spectrum will decrease to 5% after 
94 seconds. 
 

envelope, which can be used to determine Δt. 

ENCOUNTER WITH A WAVE GROUP 

wave group encounters, then the probability of 
failure during exposure time, te, can be 
determined.  

 ( )[ ]eFEGSeF tP ⋅tP λ−−= exp   (5) 

Here λGS is the rate of encounter of a critical 

1)(

wave event, either a single wave or a group, 
and PFE is the probability of failure, once such 
critical wave event is encountered. As the 
mechanism of failure may be different when 
encountering a single wave or a group, it makes 
sense to express these quantities separately 

( )[ ]eFESSFEGGeF tPPtP ⋅⋅λ−⋅λ−−= exp1)(  (6) 

where PF is the probability of failure, te is the 
time of exposure, λG is the rate of encounter of 
a wave group, and λS is the rate of encounter of 
a single wave. PFEG is the probability of failure 
if a wave group is encountered and PFES is the 
probability of failure if a single wave is 
encountered. 

0 50 100 150 

-0.5

0

0.5 

1 

-1

Time 



Proceedings of the 11th International Ship Stability Workshop 

 The rate of encounter of a wave group or 
single wave, λGS, may be estimated from a time 
series as: 

( ) ***
SG

e

GS
GS t

Nm
λ+λ==λ

∗

         (7) 

An asterisk is used to distinguish the statistical 
estimate from the theoretical value. NGS is the 
total number of waves above the threshold, 
both groups and single waves, observed during 
a window of the duration, te, and m*(NGS) is the 
estimate of the mean value of the total number 
of waves. The total number of waves above the 
specified threshold is given by 

SGGS NNN +=             (8) 

where NG  is the total number of wave groups 
and NS is the total number of single waves.  
The total number of wave groups is given by 

( )∑
∞

=

⋅=⋅=
2i

iGSEGGSG npmfNPNN        (9) 

where PEG is the conditional probability of 
encountering a wave group, and pmf (ni) is the 
probability mass function of the ith wave in a 
group. 

   

 The total number of single waves, NS, 
above the specified threshold is given by 

( ) (
ESGS

EGGSGSS

PN
PNnpmfNN

⋅=
−⋅==⋅= 11 )

    (10) 

where PES is the conditional probability of 
encountering a single wave, and pmf(n=1) is 
the probability mass function of the number of 
single waves above the specified threshold. 
 In (7), λG

* is the rate of encounter for a 
wave group and λS

* is the rate of encounter for 
a single wave. 

**
GSEGG P λλ ⋅=           (11) 

*** )1( GSEGGSESS PP λλλ ⋅−=⋅=       (12) 

CHARACTERISTICS OF WAVE GROUPS 

 In order to examine the robustness of the 
method to characterize wave sequences of 
dynamical significance to ship response, or 
wave groups, a sample Sea State 8 wave data 
set and arbitrary wave amplitude threshold and 
time between groups, were used to examine the 
distributions of these wave characteristics. 
  A sample set of 200 realizations, each 
2600 seconds long, from a Bretschneider sea 
state 8 spectrum (Hs=11.5 m, Tm= 16.4 s) was 
used. As an example to illustrate the method, 
the wave amplitude threshold was specified to 
be a= 5 m and the time between wave groups 
Δt= 50 seconds.  
 The encounter with a wave group is 
assumed to follow a Poisson flow event; 
therefore, the time between them is expected to 
be distributed exponentially. This is confirmed 
by the results of a Pearson chi-square 
goodness-of-fit test for the sample wave data 
set (Fig. 4). 
 

χ2=49.0  
d= 43  
Pχ=0.245

pdf 

Time between upcrossings, Δt, sec. 
 

Fig. 4: Distribution of the time between wave groups, Δt, 
with an amplitude threshold of a= 5m, and results from a 
Pearson chi-square goodness-of-fit-test for the sample 
Bretschneider sea state 8 data set. 

 

Number of Waves in a Group 

 The procedure for counting of number of 
waves in a group is straight forward, once the 
wave groups have been identified as described 
above. The histogram of the number of waves 
in a group is shown for the example data set 
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(Fig. 5). The most outstanding feature of this 
histogram is a very tall first bin, which 
corresponds to the case where a “group” has 
only one wave. These are single large waves, 
and from the ship dynamics perspective may be 
considered separately. For actual wave groups 
with two or more waves, the distribution 
appears similar to exponential.  
 

   

 

Fig. 5: Distribution of the number of waves in a group 
for the sample Bretschneider sea state 8 data set, with a= 
5m and Δt= 50 seconds. 

 The following additional parameters were 
obtained from the simulated wave data set: 
amplitude for the nth wave in the group, period 
for the nth wave in the group, and wave 
steepness of the nth wave in the group. 
Additional discussion of these characteristics is 
given in Bassler, et al. (2010). 

CONCLUSIONS 

 In this paper, a method to evaluate ship 
response in heavy seas using wave groups was 
discussed. The response for these events may 
be characterized by a high degree of 
nonlinearity. Modeling a significantly 
nonlinear system in a stochastic environment is 
difficult. Because of the rarity and significant 
nonlinearity for the large response, either 
numerical simulations and/or model tests must 
be used.  
 The principle idea behind using wave 
groups is to enable separation of the 

complexity of nonlinear dynamics of ship 
response from the complexities of a 
probabilistic description for the response. This 
separation may be achieved by considering 
irregular waves as a series of wave groups, 
which are capable of producing undesirable 
response, interlaced with intervals of relatively 
benign waves. Then the nonlinearity of the 
response only becomes important during the 
duration of the groups, while the intervals of 
benign waves are only “responsible” for 
providing the initial conditions when 
encountering the wave group.  
 The wave group can be considered as 
deterministic sequence of waves exciting a 
nonlinear dynamical system. With this 
formulation, wave groups may be considered as 
a possible method to solve the problem of 
rarity and, with the wave group characteristics 
related to ship-specific properties, can be 
solved in a deterministic manner.  

pmf 

 A wave group is defined as beginning with 
the first upcrossing of the specified threshold, 
a, and ending with a downcrossing, of the 
threshold, where the next upcrossing of the 
threshold occurs at a time greater than the 
specified minimum duration between groups, 
Δt. Both the threshold and duration can be 
specified based on the given ship type and 
seaway information. This method enables wave 
group characteristics to be obtained from time-
series information, or from merely spectral 
information, which may be available from 
wave buoys in the area of operation for a ship. 
Using this method, a procedure to evaluate the 
probability of a rare event, the undesirable 
response, using wave groups is also presented. 

Number of waves in a group 

 For future work, a probabilistic model of 
wave groups will be obtained, by fitting 
distributions to the characteristics. Then 
realizations of wave groups with the 
representative probabilistic characteristics must 
be realized in the time-domain, using either 
numerical simulations or experiments, or both. 
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