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Abstract

It is the aim of this paper to further the use of Lyapunov and local Lyapunov exponent methods for ana-

lyzing phenomena involving nonlinear vessel dynamics. Lyapunov exponents represent a means to measure

the rate of convergence or divergence of nearby trajectories thus denoting chaos and possibly leading to

the onset of conditions that produce capsize. The work developed here makes use of Lyapunov exponent

methodologies to study capsize and chaotic behavior in vessels both experimentally and numerically using

a multi-degree of freedom computational model. Since, the Lyapunov exponent is defined in the limit as

time approaches infinity, one encounters fundamental difficulties using Lyapunov exponents on the capsize

problem, which is inherently limited to a finite time. This work also incorporates the use of local Lyapunov

exponents, which do not require an infinite time series, to demonstrate their usefulness in analyzing finite

time chaotic vessel phenomena. The objective is to demonstrate the value of the Lyapunov exponent and

local Lyapunov exponent as a predictive tool with which to indicate regions with crucial sensitivity to initial

conditions. Through the intelligent use of Lyapunov exponents in vessel analysis to indicate specific regions

of questionable stability, one may significantly reduce the volume of costly simulation and experimentation.

Keywords: capsize, chaos, Lyapunov exponent, local Lyapunov exponent, nonlinear vessel motions

1 Background

The method of Lyapunov characteristic exponents serves as a useful tool to quantify chaos. Specifically,

Lyapunov exponents measure the rates of convergence or divergence of nearby trajectories.(Haken, 1981;

Wolf, 1986) Negative Lyapunov exponents indicate convergence, while positive Lyapunov exponents demon-

strate divergence and chaos. The magnitude of the Lyapunov exponent is an indicator of the time scale on

which chaotic behavior can be predicted or transients decay for the positive and negative exponent cases

respectively (Wolf, 1986).

Physically, the Lyapunov exponent is a measure of how rapidly nearby trajectories converge or diverge.

If one considers a ball of points in N-dimensional phase space, in which each point follows its own trajectory
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based upon the system’s equations of motion, over time, the ball of points will collapse to a single point,

will stay a ball, or will become ellipsoid in shape (Glass & Mackey, 1988). The measure of the rate at

which this infinitesimal ball collapses or expands is the Lyapunov exponent. For a system of equations

written in state-space form ẋ = u(x), small deviations from the trajectory can be expressed by the equation

δẋi = (∂ui/∂xj)δxj (Eckhardt & Yao, 1993). The maximal Lyapunov exponent is then defined by Equation

1.1 Often times only the maximal Lyaponov exponent is discussed since the maximal exponent is simplest

to calculate from a numerical time series and yields the greatest insight into the dynamics of the system.

However, for a space with dimension N, there are N Lyapunov exponents which make up the Lyapunov

spectrum and correspond to the rate of expansion or contraction of the principal axes of the infinitesimal

N-dimensional ball. For example, after ordering Lyapunov exponents with λ1 being the largest and λN being

the smallest, the length of the most rapidly growing principal axis is proportional to eλ1t, the area of the

two most rapidly growing principal axes is proportional to e(λ1+λ2)t, etc... (Wolf et al., 1985). Other useful

quantities are the short time Lyapunov exponent and the local Lyapunov exponent. A short time Lyapunov

exponent is simply a Lyapunov exponent defined over some finite time interval. The local Lyapunov exponent

is a short time Lyapunov exponent in the limit where the time interval approaches zero. Both are dependent

on starting points, and the short time Lyapunov exponent is also dependent on the magnitude of the time

interval. Equations for short and local Lyapunov exponents are presented in Equations 2 and 3 respectively

(Eckhardt & Yao, 1993). Since it is not practically possible in a numeric or experimental sense to take the

limit T → 0, for the purposes of this paper the phrases ‘short time’ and ‘local’ Lyapunov exponents will be

used interchangeably in reference to the approach given by Equation 2. Experimental data was collected

with a time step of 0.033 s and thus for consistency the short time Lyapunov exponent is calculated at this

interval in the numerical model.

λ∞ = lim
t→∞

1
t

log
‖δx(t)‖
‖δx(0)‖ (1)

λT (x(t), δx(0)) =
1
T

log
‖δx(t + T )‖
‖δx(t)‖ (2)

λlocal(x(t)) = lim
T→0

1
T

log
‖δx(t + T )‖
‖δx(t)‖ (3)

One can draw conclusions about the nature of the dynamical system from the spectra assembled. For

a one-dimensional system a positive Lyapunov exponent indicates chaos, a negative exponent defines a pe-

riodic orbit, and a zero value represents an orbit with marginal stability.(Wolf et al., 1985) For the case

of a three-dimensional system there are three Lyapunov exponents making up the spectra. A fixed point

consists of all negative exponents. A limit cycle’s spectrum would have two negative values and a zero. A

two-torus has two zeros and a negative value in it’s spectrum, and a strange attractor has one each of posi-

tive, negative, and zero values.(Wolf et al., 1985) This pattern can be extended to higher dimensional spaces.

1The Lyapunov exponent is defined with the logarithm base e. Depending on the nature of the application, at times the

exponent is calculated base 2 in order to allow the output to be expressed in terms of bits per second. This lends physical

insight as to a rate at which information about the state of the system is created or destroyed (Schuster, 1984). For consistency,

in this work, the exponent is always calculated using the true definition base e and is therefore expressed with units of 1/time.
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Since the Lyapunov spectrum is derived from a long-time evolution of an infinitesimal sphere, it is not

a local quantity either spatially or temporally (Wolf et al., 1985). Therefore, one of the potential benefits

to examining the capsize problem through the method described by Lyapunov exponents, is the number

of numerical or physical experiments necessary to draw quantitative conclusions can be drastically reduced

from the quantity which would be necessary by brute force simulation.

This method has been touched on in previous naval architecture applications. Falzarano first noted with-

out application the potential for using this to quantify chaotic ship dynamics (Falzarano, 1990). Papoulias

(Papoulias, 1987) used Lyapunov characteristic exponent spectra to demonstrate the onset of chaotic be-

havior for a simulated tanker mooring system. Papoulias’ model consisted of three degrees of freedom in

surge, sway, and yaw and thus six state variables. He employed Lyapunov exponents to confirm instabilities

for which he was already aware. The purpose of the following section, conversely, is to demonstrate that

Lyapunov exponents can be used to indicate regions of instability for which further analysis is required.

Additionally, Murashige and Aihara make reference the use of Lyapunov exponents in analyzing capsizing

models for a flooded ship in regular beam seas (Murashige & Aihara, 1998). While their model accounts for

some of the complexities associated with a flooded ship, it neglects sway and heave motion (Murashige &

Aihara, 1998). Additionally, their analysis of Lyapunov exponents is limited to their numerical model. They

do not validate their Lyapunov prediction with their experimental result, and their Lyapunov calculation is

limited to one marginally unstable case in which capsize does not occur. Arnold et al conducted a thorough

numerical study of the single degree of freedom capsize case, but their work is limited to a one degree of

freedom numerical model using solely the long time Lyapunov exponent (Arnold et al., 2003).

The work of the following sections provides a more complete investigation into the use of Lyapunov

exponents for analyzing stable, marginally unstable, and unstable dynamics leading to capsize. The goal is

to evaluate Lyapunov exponents as a predictive tool with which to indicate regions of crucial sensitivity to

initial conditions. To allow for detailed investigation into regions of questionable stability, one may reduce

the necessary volume of simulations and experimentation of the entire phase space through intelligent use

of Lyapunov exponents. Additionally, since the Lyapunov exponent provides a quantitative value, it can

be used as a tool to directly compare the accuracy of a numerical model to experimental runs. Rather

than attempting to qualitatively evaluate a numerical tool through predicting capsize with a heads or tails

type comparison of capsize versus non-capsize, the Lyapunov exponent can be used to demonstrate that a

numerical model is in fact simulating the same type, or magnitude of chaos as experiments.

2 Lyapunov exponents from experimental time series

2.1 Theory

A large volume of work has been dedicated to the problem of calculating Lyapunov exponents from experi-

mental time series. A number of researchers have developed methods which can be divided into two distinct

approaches, direct methods and tangent space methods.
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Direct methods consist of searching the time series for neighbors at any given point and calculating

expansion rates through comparison to these neighboring points. The first such method was that of Wolf

et al (1985). Wolf et al (1985) developed a methodology in which one can calculate the largest positive

Lyapunov exponent from a data set by following the long term evolution of one principal axis, a ‘fiducial

trajectory’, progressively reorthonormalized maintaining phase space orientation (Wolf et al., 1985). Wolf’s

method is highly sensitive to inputs, however, and can easily lead to an erroneous result. In the early 1990’s

two separate research groups produced a new method (Rosenstein et al., 1993; Kantz, 1994). The approach

eliminates the requirement Wolf imposes upon maintaining phase-space orientation stating it is unnecessary

for calculating the largest Lyapunov exponent (Rosenstein et al., 1993). Additionally, rather than following

one trajectory, the full data set is used, and in essence a trajectory for every pair of nearest neighbors is

calculated. For details refer to Rosenstein et al (1993) and Kantz (1994). Both methods are substantively

similar. The Kantz algorithm (and similarly the Rosenstein algorithm) calculates the largest Lyapunov

exponent by searching for all neighbors within a neighborhood of the reference trajectory and computes

the average distance between neighbors and the reference trajectory as a function of time (or relative time

scaled by the sampling rate of the data) (Kantz, 1994; Rosenstein et al., 1993). The algorithm computes

values for Equation 4 with parameters defined as follows: xt, arbitrary point in time series; Ut, neighborhood

of xt; xi neighbor of xt; τ , relative time scaled by sampling rate; T length of time series; S(τ) stretching

factor with region of robust linear increase showing slope equal to Lyapunov exponent ie eλτ ∝ eS(τ) (Kantz,

1994; Kantz & Schreiber, 2004). However, this post-processing requirement of a robust linear increase in

slope introduces new errors. While the method is useful and accurate for systems with known values for the

Lyapunov exponent, the choice of region and parameters over which a ‘robust linear increase’ are found is

somewhat arbitrary. It is the opinion of the authors that this tool is useful only if one knows what value of

Lyapunov exponent is desired and can thus choose the region exhibiting a slope equal to that value.

S(τ) =
1
T

T∑
t=1

ln

(
1
|Ut|

∑

iεUt

|xt+τ − xi+τ |
)

(4)

Tangent space methods, developed simultaneously by the separate research teams of Sano and Sawada

(1985) and Eckmann and coauthors (1985; 1986) allow for calculation of the full spectrum of Lyapunov

exponents through local predictions of the Jacobian along the time series trajectory. For example, for a

given trajectory x(t) defined by Equation 5, the tangent vector ξ is given by the linearized form of Equation

5 presented in Equation 6 where J is the Jacobian matrix of f , J = ∂f/∂x (Sano & Sawada, 1985). Sano

and Sawada (1985) solve Equation 6 through a least squares estimate of the time dependent linear operator

Aj which approximates the map from ξ(0) to ξ(t). The Lyapunov exponents are then computed using

Equation 7 where τ is a flow scale time increment, n is then number of data points, and e is an orthonormal

basis maintained using a Gram-Schmidt renormalization process (Sano & Sawada, 1985). For details of this

process refer to Sano and Sawada (1985) or the similar works of Eckmann et al (1985; 1986).

ẋ = f(x) (5)

ξ̇ = J(x(t)) · ξ (6)
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λi = lim
n→∞

1
nτ

n∑

j=1

ln ‖Aje
j
i‖ (7)

The weakness of this approach is in its sensitivity to choice of embedding dimension. Too small an em-

bedding dimension outputs erroneous Lyapunov exponents while too large an embedding dimension creates

spurious exponents (Kantz, 1994). However, for this application with careful attention paid to the choice

of embedding dimension, the tangent space method was found to be more robust then the direct methods

as it was not dependent on any form of arbitrary postprocessing. To check for spurious exponents, the

technique first suggested by Parlitz (1992) of analyzing both the original time series and the reversal of the

original time series was used. No significant errors were noted for the largest Lyapunov exponents presented

in this work. The implementation of the Sano and Sawada method included in the TISEAN (Hegger et al.,

2000) package was used to calculate Lyapunov exponents for the experimental time series in the following

subsections.

2.2 Application to the capsize problem

The Sano and Sawada algorithm (1985) contained in TISEAN (Hegger et al., 2000) was applied to roll time

series for the capsize and non-capsize experiments detailed in works by Obar and Lee (2001) and Lee et

al (2004) with an embedding dimension equal to 6 to represent the six state-space variables. The physical

model used in the experimental analysis and replicated numerically was a box barge featuring the following

principal parameters: beam, B = 30.48 cm; beam/draft, B/T = 1.67; depth/draft, D/T = 1.06; beam/wave

length, B/λ = 0.23; wave amplitude/wave length, ζo/λ = 0.01; roll natural frequency ωn = 2.28 rad/s;

excitation frequency/roll natural frequency, ωe/ωn = 3.0; and angle of vanishing stability θv = 11.4 degrees.

The results of completing the process of using Sano and Sawada’s algorithm to calculate the largest Lya-

punov exponent for all capsize and non-capsize runs are presented in Figure 1. As one might expect, there

is relatively little variation in Lyapunov exponent values. The mean Lyapunov exponent for all runs is 1.76

s−1. The mean exponent for capsize runs, 1.83 s−1 is somewhat larger than that of non-capsize runs, 1.57

s−1 with significantly larger outliers. The histograms in Figure 2 show the distribution of Lyapunov expo-

nents for both the capsize and non-capsize cases. Due to the brevity of the time series leading to capsize, it

is impossible to confirm convergence of the Lyapunov exponent. However, it is feasible to discern an order

of magnitude of the Lyapunov exponent with which to compare the numerical model as well as to conclude

that runs leading to capsize are more chaotic in nature than those not leading to capsize as is apparent in

Figures 1-2. The Lyapunov exponent is, by definition, an infinite time parameter, but by nature capsize

is a finite event. For this reason greater insight can be gleaned through calculation of the local Lyapunov

exponent as will be discussed in Section 4. It should be noted that all runs result in a positive, chaotic,

Lyapunov exponent. Recall that under the definition of the Lyapunov exponent a stable limit cycle would

have a zero Lyapunov exponent. Therefore, the motions measured in the six dimensional state-space are

growing rather that oscillating sinusoidally. Chaotic behavior is detected even in the non-capsize case.
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Figure 1: Lyapunov exponents based on experimental time series. Phase space showing Lyapunov

exponents versus roll and roll velocity initial conditions sampled at time to. Model release time and length

of time series variable between runs.

1 1.5 2 2.5 3
0

5

10

15

20

25

Lyapunov Exponent

N
um

be
r o

f O
cc

ur
en

ce
s

Experimental Runs Leading to Capsize

1 1.5 2 2.5 3
0

5

10

15

20

25

Lyapunov Exponent

N
um

be
r o

f O
cc

ur
en

ce
s

Experimental Runs Not Leading to Capsize

Figure 2: Histograms of Lyapunov exponent values for runs leading to capsize and non-capsize.
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3 Lyapunov exponents from ordinary differential equations

3.1 Theory

As discussed in the previous section, the Lyapunov exponents measure the evolution of an infinitesimal

sphere. However, infinitesimal quantities are not computationally feasible, and for a chaotic system with

a finite initial separation between the principal axes of the sphere, it is impossible to assure convergence

of solution for Lyapunov exponents before infinite values are encountered (Wolf, 1986; Wolf et al., 1985).

Therefore, other means of evaluation are necessary.

To overcome this difficulty, Benettin et al proposed a method in which the trajectory of the center of

the infinitesimal sphere, the fiducial trajectory, is defined by the nonlinear equations based upon initial

conditions.(Benettin et al., 1980) Principal axes are then calculated from the linearized form of the equa-

tions of motion about the fiducial trajectory (Wolf, 1986). These axes will, by definition, be infinitesimal

relative to the attractor (Wolf et al., 1985). In implementation two computational difficulties arise, namely,

computational limitations prohibit calculation of exponential growth and all basis vectors will have a ten-

dency towards the direction of most rapid growth allowing for calculation of only the largest Lyapunov

exponent (Wolf et al., 1985). To overcome these computational difficulties a Gram-Schmidt orthonormal-

ization procedure is used (Wolf et al., 1985; Bay, 1999). Through noting the magnitude of vectors prior to

re-normalization, growth rates are calculated. Additionally, by maintaining an orthonormal basis all Lya-

punov exponents can be calculated. The first vector will naturally tend towards the largest rate of growth,

the second vector towards the second most rapid growth rate, and so on (Wolf et al., 1985). Through the

use of a Gram-Schmidt reorthonormalization the rapidly growing axes can be renormalized to represent an

orthonormal basis maintaining the volume’s phase-space orientation (Wolf, 1986; Wolf et al., 1985). For

further details on this process refer to (Benettin et al., 1980; Lichtenberg & Lieberman, 1983; Parker &

Chua, 1989; Seydel, 1988; Wolf, 1986; Wolf et al., 1985).

3.2 Application to the capsize problem

3.2.1 Implementation

Calculating the Jacobian of the equations of motion used in the numerical simulator (Obar et al., 2001;

McCue & Troesch, 2003; Lee et al., 2004), given by Equation 8 is non-trivial. While the mass and linear

damping terms are easily treated, the quadratic damping and forcing terms require extra consideration.




m + a22 0 a24

0 m + a33 0

a42 0 Icg + a44







ẍg

ÿg

φ̈


 +




b22 0 b24

0 b33 0

b42 0 b1







ẋg

ẏg

φ̇


 (8)

+




0 0 0

0 0 0

0 0 b2







0

0

φ̇|φ̇|


 =




ρge2∇+ fD
2

ρge3∇−mg + fD
3

ρge4GZ∇+ fD
4



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Two approaches to treat the quadratic damping term are as follows. One method is to replace, in the

linearized model, the term φ̇|φ̇| with φ̇2 for φ̇ > 0, −φ̇2 for φ̇ < 0, and assume that the precise singularity

at φ̇ = 0 will never be encountered due to double precision computational accuracy. The second approach

is to use Dalzell’s (1978) treatment for quadratic damping. Dalzell (1978) fits an odd function series of the

form φ̇|φ̇| =
∑

k=1,3,... αk
φ̇k

φ̇k−2
c

. Solving for αk the truncated third order fit becomes φ̇|φ̇| ≈ 5
16 φ̇φ̇c + 35

48
φ̇3

φ̇c

over some range −φ̇c < φ̇ < φ̇c (Dalzell, 1978). Basic testing indicated both treatments yield similar results,

therefore the Dalzell treatment, with φ̇c = 10 degrees, was used for the results presented herein to avoid any

difficulties due to the singularity associated with the first method.

The linearized influence of the forcing side of the equation is calculated using a simple differencing scheme.

Forces are calculated as the difference between their values on the fiducial trajectory and their values at

the offset from the trajectory. Due to linear superposition this can be calculated in a more computationally

efficient manner for the differential at (x + δx, y + δy, φ + δφ, t) rather than conducting the summation of

force differentials at (x + δx, y, φ, t), (x, y + δy, φ, t), and (x, y, φ + δφ, t). Therefore, the linearized form of

the equations of motion about the fiducial trajectory are written as Equation 9:



m + a22 0 a24

0 m + a33 0

a42 0 Icg + a44







δẍg

δÿg

δφ̈


 +




b22 0 b24

0 b33 0

b42 0 b1







δẋg

δẏg

δφ̇




+




0 0 0

0 0 0

0 0 b2( 5
16 φ̇c + 35

16
φ̇2

φ̇c
)







0

0

δφ̇


 = (9)




ρge2∇+ fD
2

ρge3∇−mg + fD
3

ρge4GZ∇+ fD
4




(x+δx,y+δy,φ+δφ,t)

−




ρge2∇+ fD
2

ρge3∇−mg + fD
3

ρge4GZ∇+ fD
4




(x,y,φ,t)

Six sets of these linearized equations are integrated in time to calculate the ith Lyapunov exponent for

i=1,6 by measuring the logarithm of the rates of growth of the six systems. Numerically this corresponds to

the discrete representation of Equation 1 as Equation 10 in which ‘m’ represents the number of renormal-

ization steps conducted and ‘L’ denotes the length of each element. The methodology employed is derived

from that published by Wolf and coauthors (Wolf et al., 1985; Wolf, 1986).

(λ1)m =
1
t

m∑

j=1

log
L(tj+1)
L(tj)

(10)

3.2.2 Results

Figure 3 presents a three-dimensional phase space portrayal with the value of the first Lyapunov exponent

plotted on the z-axis. Ten minutes of simulated data was collected for non-capsize runs and capsize runs

were simulated until the point of capsize. Initially this plot could appear enigmatic. Graphically, it is ap-

parent that all non-capsize runs result in an equal valued positive Lyapunov exponent of approximately 1.77

s−1 after 600 simulated seconds. Intuitively it is expected that capsize runs would have larger Lyapunov
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Figure 3: Lyapunov exponents based on numerical simulation. Phase space showing Lyapunov exponents

versus roll and roll velocity initial conditions with numerical model released at to.

exponent values than non-capsize, however capsize runs all feature small, even near-zero Lyapunov exponents.

To make physical sense of this counter-intuitive result consider Figure 4 which shows the convergence, or

lack thereof, of Lyapunov exponents for neighboring capsize and non-capsize cases. In Figure 4 it is evident

that the time series resulting in capsize is too short to allow for convergence of the Lyapunov exponent. While

the Lyapunov exponent of both the non-capsize and capsize cases follow closely, it is only immediately before

capsize that the value of the Lyapunov exponent for the capsize case rises somewhat above the value of the

Lyapunov exponent for the non-capsize case. Yet capsize occurs sufficiently rapidly as to prevent convergence

of the exponent and instead results in small, non-converging, Lyapunov exponents. This explains the small

values of Lyapunov exponents for capsize runs shown in Figure 3. As is evident, hundreds of cycles are

necessary for exponent convergence.

Even with a lack of convergence of the Lyapunov exponent for capsize cases, key information can be

derived from the result. Primarily, since the Lyapunov exponent is an indicator of the magnitude of the

chaos of the system, by way of comparison of experimental and numerical results for large amplitude motions

near capsize this methodology serves as a validation tool for the numerical model. Consider Figures 1 and

3. In Section 2 it was shown that the Lyapunov exponent for experimental runs not leading to capsize was

1.57 s−1. This value is close to the Lyapunov exponent of approximately 1.77 s−1 for non-capsize runs

using the numerical model. Additionally, due to the finite nature of the experimental tests, it is anticipated

that if it were feasible to collect data over longer time interval, such as the ten minute interval over which

the numerical model was simulated, the experimental Lyapunov exponent would converge to a somewhat

larger value thus reducing the difference between the two mean exponents. It is impossible then to calculate
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Figure 4: Numerically calculated Lyapunov exponent as a function of time for neighboring capsize and

non-capsize cases. Top panel shows full time series from t = 0 to t = 600. Bottom panel shows identical

data over critical region from t = 25 to t = 40. Both runs released with zero initial roll velocity, sway, sway

velocity, heave, or heave velocity. Initial roll for non-capsize and capsize runs equal to 0 and 1 degree

respectively.

an accurate value of the Lyapunov exponent for a capsize run. To understand the chaotic behavior lead-

ing to capsize it is important to consider a short term Lyapunov exponent instead as is discussed in Section 4.

4 Short time Lyapunov exponents from ordinary differential equa-

tions

4.1 Implementation

The short time Lyapunov exponent from ordinary differential equations is calculated in much the same

manner as the Lyapunov exponent. Again, ‘n’ sets of differential equations linearized about the fiducial

trajectory are calculated to measure incrementally stretching and shrinking principal axes. The ‘n’ linearized

sets, where ‘n’ is the dimension of the phase space, are reorthonormalized after each step. Numerically,

Equation 2 is calculated as Equation 11.

λ1(x(t),∆t) =
1

∆t
log

L(t + ∆t)
L(t)

(11)
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Figure 5: Numerically calculated short time Lyapunov exponent as a function of time for neighboring

capsize and non-capsize cases. Top panel shows full time series from t = 0 to t = 600. Bottom panel shows

identical data over critical region from t = 25 to t = 40. Both runs released with zero initial roll velocity,

sway, sway velocity, heave, or heave velocity. Initial roll for non-capsize and capsize runs equal to 0 and 1

degree respectively.

4.2 Results

Consider Figure 5 in comparison to Figure 4. In both figures the numerical model is released at to, the

location of the maximum transient wave peak, or 27.1705 seconds (Lee et al., 2004). Figure 5 shows the

short time Lyapunov exponent as a function of time for the same neighboring cases leading to capsize and

non-capsize. The non-capsize case rises to a maximum value of 4.37 s−1 then, similarly to Figure 4, converges

to oscillatory behavior about a short time Lyapunov exponent of 1.85 s−1. However, for the capsize case

useful predictive information is now visible. For the last few steps prior to capsize the short time Lyapunov

exponent is larger than the short time Lyapunov exponent for non-capsize although they initially feature

similar behavior. At capsize the short time Lyapunov exponent rapidly increases to a value an order of

magnitude larger than that of the non-capsize case.

Figure 6 presents the values of short time Lyapunov exponent as a function of initial roll and roll velocities.

While Figure 3 featured relatively invariant values of Lyapunov exponent based upon capsize or non-capsize,

Figure 6 yields a range of short time Lyapunov exponents for runs leading to capsize. In Figure 6 runs

not leading to capsize all feature peak short time Lyapunov exponent values near 4.2 s−1 as shown by the

histogram plot of the same data given in Figure 7. However, as seen in Figure 7 runs leading to capsize have

a wide range of values for short time Lyapunov exponent with a mean of 8.3 s−1 and a standard deviation
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Figure 6: Short time Lyapunov exponents based on numerical simulation. Phase space showing short time

Lyapunov exponents versus roll and roll velocity initial conditions with numerical model released at to.

of 6.1 s−1, an order of magnitude larger than the standard deviation of the peak first short time Lyapunov

exponent for runs not leading to capsize.

It should be noted that peak short time Lyapunov exponent for capsize runs ranges from near zero to 33

s−1. It is the hypothesis of the authors that capsize runs featuring small short time Lyapunov exponents

are a result of a ‘blue sky catastrophe’ or a process with hysteresis as discussed by Thompson and coauthors

(1987) and Lee et al (2004). In such cases the rapid growth of the capsize attractor results in a capsize

which is potentially difficult to detect unless the time interval of measurement is exceedingly small. This is

consistent with the top panel of Figure 8 which indicates that the bulk of the runs with both the smallest

and largest local Lyapunov exponents capsize within the first time steps immediately after the maximal

exponent and the bottom panel which shows that the smallest Lyapunov exponents are found for runs which

capsize within the first two cycles after release. Analysis of Figure 6 also indicates that that those capsize

runs with smallest local Lyapunov exponent tend to be found at large negative initial roll angles. Many of

these roll angles are statistically unlikely to occur and therefore choosing initial limits of phase space using

a statistically validated methodology, such as that described in McCue and Troesch (2004a; 2004b) is a

relevant first step in the analysis of real vessels operating in real seaways.

5 Conclusions

From the study presented herein the usefulness of the Lyapunov exponent and short time Lyapunov exponent

as analytical tools for studying vessel capsize is investigated. To summarize:
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Figure 7: Histograms indicating range of short time Lyapunov exponent values for runs leading to capsize

and non-capsize.
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Figure 8: (top) Peak value of largest local Lyapunov exponent as a function of the number of cycles from

peak exponent to capsize. (bottom) Peak value of largest local Lyapunov exponent as a function of the

number of cycles from release to capsize.
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• The Lyapunov exponent is a fundamental system parameter taking on fixed values in the non-capsize

region with minimal transitional areas. It can be used to isolate regions of questionable stability to

aid in the reduction of test matrices.

• The Lyapunov exponent is shown effective as a validation tool for capsize simulators. Through consis-

tency between the magnitude of a system parameter such as the Lyapunov exponent for large amplitude

roll motions measured from an experimental time series and those measured from a numerical simu-

lator, it is possible to demonstrate that the numerical model is capturing the inherent physics of the

problem.

• The inherent ineffectiveness of the Lyapunov exponent to yield informative results for the capsize

problem is demonstrated. Rather, the importance of calculating a finite time value, such as a short

time Lyapunov exponent is discussed.

• From the calculation of the short time Lyapunov exponent further system information is gained which

can be used as a predictive tool to indicate lost stability potentially leading to capsize. However, more

work must be done to further identify the different types of capsize as characterized by small and large

short time Lyapunov exponents.
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