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Introduction 
Whilst well-known as a phenomenon for at least half a century (Grim 1952; Kerwin 1995; Arndt & Roden 1958; 
Pauling & Rosenbersg 1959), no specific design requirements referring to parametric rolling have yet found their 
way into the IMO stability regulations. A possible explanation is that, whilst it is often the cause of intensive rolling, 
it is rarely documented to lurk behind a specific capsize accident.  Yet, the Market is becoming increasingly alert to 
this problem because even ‘non capsizal’ instabilities can incur tremendous effects in terms of loss or damage of 
property and business interruption (Gray 2001; Tinslay 2003). This has led a classification society recently to take 
the lead and publish a guide for the parametric rolling of containerships (ABS 2004). 
By-and-large, the dynamics of the parametric rolling of ships are nowadays well understood (e.g Spyrou 2000, 
Neves 2002, Bulian et al 2003; Shin et al 2004). Nonetheless, some ships like modern post panamax containerships 
and probably some of the new large passenger ships that are characterised by their heavily flared bow and flat stern 
with wide transom, may be sailing without having examined their tendency to display parametric rolling in a 
longitudinal seaway. Besides issues of ship design and/or operation, there is also a mounting discussion about the 
effectiveness of our physical model testing techniques for verifying that a hull form does not display tendency for 
parametric rolling (Belenky et al 2003). Whilst these issues are not separate, here we focus only on the question of 
design criteria. Specifically, we put forward a new concept for assessing, at an early design stage, the tendency of a 
ship for parametric rolling, which combines the deterministic and probabilistic sides of the problem and 
encompasses the following three principles: 

Probability of occurrence of critical behaviour:  
 The probability of exhibiting parametric rolling due to the encounter of a dangerous wave group should be 

kept lower than the acceptable level.  
Assessment of post-critical behaviour 

 Under no circumstances the amplitude of parametric rolling should exceed a limit of safe operation. 
 Abrupt growth of roll within a small number of critical wave encounters should not be allowed. 

We shall expand on these three principles, taking the last one first:  

A transient criterion for initial parametric roll growth  
It can be shown that for a Mathieu system the unstable motion in the first region of instability should build-up 
according to the following approximate general law (Hayashi 1985): 
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At  the coefficient 1=a µ  obtains its maximum value 4max h−=µ  where 4πσ −= .  
From (1) and after substitution of the initial conditions ( ) 00 ϕϕ =  and ( ) 00 =ϕ&  we can extract the growth of 
amplitude after p roll cycles:  
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In the presence of linear damping the growth rate is reduced: 
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From the exponential term 
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possibility of growth):  
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The above is a condition of asymptotic stability; i.e. in principle a very long sequence of tuned waves having the 
right height is required for instability. Apparently, there is an advantage in exploiting equation (4), which 
corresponds to transient rolling, rather than (5), which refers to asymptotic behaviour and may lead to a stringent 
requirement.   

On the basis of (4), roll growth after p  roll cycles, at exact resonance, ( 1=a ), should be: 

( ) 0

22
2

0 2
0 ϕϕ

ππ

ω
π

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+

≈
−

−
hphp

kp
eeepT                                       (6) 

A q-fold increase of roll amplitude from its initial value should entail  p  roll cycles: 
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Since, after one or two roll cycles the exponential term of (7) with positive sign becomes dominant, the above may 
be written further, approximately, as: 
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It accrues that the number of cycles p  required for a q-fold increase of amplitude may be obtained from the 
expession: 
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The corresponding time  should be p times the natural period : mt 0T

0Tptq =                                                                (10) 

To demonstrate the value of (9), let us thing in terms of the following criterion: a 10-fold increase of roll amplitude 
should not come about in less than 4 roll cycles (which means 8 wave encounters – it is possible to link this to the 
probability of encountering a dangerous wave group). Let’s consider waves with 201,0.1 == λλ HL . These 
translate into the following requirement for :  kh,
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In summary, by focusing on transient response, we can determine the critical , or equivalently the critical 
damping, for any wave group run length, thus achieving a meaningful and flexible interface with the probabilistic 

h
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nature of ocean waves (we expand on this later). The condition of asymptotic stability is recovered from (9) if we set 
∞→p . The criterion should probably be supplemented by a time requirement based on (10). For example, the 4 

roll cycles should take 8.10247.25 =× s. For very low natural frequencies, the required time becomes excessive. 
This leaves time for reaction (i.e. change of speed or heading) if the beginning of the phenomenon is promptly 
recognised.  

GROWTH ENDS (NONLINEARLY) ON THE STEADY ROLL OSCILLATION  
As is well known, there is no reason for this growth to persist up to infinity and thus lead by necessity to capsize. 
The detuning due to the nonlinear character of the GZ curve together with the increased dissipation due to the mild 
nonlinearity of damping, create  the prospect of steady oscillatory rolling with moderate amplitude. In effect, for a 
typical parametric growth with nonlinear restoring the boundary curves of stability discussed earlier represent loci of 
bifurcations giving birth to unstable and unstable oscillatory behaviour [see for example Skalak & Yarymovych 
1960; Soliman & Thompson 1992].  
The instability boundary curves of the upright state of a ship do not contain entirely the domain where parametric 
oscillations are realisable. The emerging stable roll oscillations need not be confined inside the “tongues” of the 
linear system and stable oscillations exist also well outside these regions [Scalak & Yarymovich 1961, Thompson & 
Soliman 1993, Francescutto & Dessi 2001]. Should we worry about these nonlinear oscillations that “lιve” outside 
the “tongues”? The answer is probably yes. In an idealised environment of a periodic seaway that is free from other 
external disturbances, the ship should find no reason to leave the upright state as long as the combination of 
frequency ratio and parametric amplitude corresponds to some point in the region of stability. However, should the 
stable upright condition be sufficiently disturbed, this oscillatory behaviour can be incurred in an abrupt way. We 
may say that the probability of occurrence of parametric rolling decreases as we move away from the condition of 
exact resonance but it is doubted whether it should be assumed as acceptably low. Perhaps we should place less 
emphasis on the necessity of fulfilling the condition of exact principal resonance for the occurrence of parametric 
rolling.  To explain these points further, let us consider a Mathieu-type roll equation with a single, cubic nonlinear 
term: 
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The constant  could be negative, in which case we are examining the oscillations corresponding to the initial part 
of the 

n
( )ϕGZ  curve which is often of “hardening spring” type; or it could be positive in which case we may refer 

generically to the entire ( )ϕGZ  curve up to the angle of vanishing stability. 
Application of a perturbation method like harmonic balance or averaging leads to the following explicit formula for 
the amplitude: 
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Setting  we find the curve whereon the oscillations are created. It comes to no surprise that this curve is 
independent of the nonlinear coefficient  and it coincides with the boundary of linear stability. Also, the term 
inside the square root, as well as the whole expression of 

0→A
n

2A , should be non-negative. For an initially hardening 
restoring ( ) these yield,  0<n

a
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In essence, (14) defines the locus of “saddle-node” (or so-called “fold”) bifurcations. On this curve, the unstable 
periodic orbits that are shed from the left boundary of the instability region perform a U turn and become stable (this 
can be understood considering that, for negative , at the ‘lower ’ boundary of the instability region a 
subrcritical bifurcation takes place thus creating unstable oscillations; whereas the boundary at  gives birth to 
a supercritical one i.e. stable oscillations).  
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Condition (14) determines the true boundary of periodic response. For a certain level of , the region where stable 
oscillations are encountered is wider than the predicted from the linear analysis. Fig. 1 shows the development of 
amplitude as function of  and  (

h

a h nAA 3/4* −=  ) for a container with the dimensions of APL China and 
. The stability of the emerging steady roll oscillations is shown (dashed line represents 

unstable).  
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Fig. 1: Amplitude of response for hardening restoring 
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Fig. 2: Iso-A curves (from 0.1 to 0.7) for k=0.015, n=-2.35 (hardening), ω0 = 0.2448 s-1. 
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Fig. 3:  Effect of damping on the amplitude of periodic response with parameter the
coefficient of nonlinear stiffness (“hardening”) 
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 The domain of oscillatory behaviour (bounded by the thick continuous line) can easily be found with some 
manipulation:  
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The combinations of  that give rise to oscillations of predefined I s shown in Fig. 2. It is not difficult to 
prove that the descending part of each iso-  curve corresponds to stable rolling and the ascending to unstable. The 
boundary of stable rolling is reconfirmed. As we have multiple coexisting stable responses, the initial conditions and 
the availability of sufficiently strong external disturbances determine whether the ship can stay upright, or should 
adopt the one (desired) or the other   (undesired and possibly dangerous) way of behaviour.  

( ah, ) *A
*A

In Fig. 3 is shown the variation of the roll amplitude A for n=-2.35, as a function of the linear damping and the 
amplitude of parametric forcing. It should be noted that the amplitude of response is second order quantity in terms 
of damping. Hence, for small (yet realistic for many operating ships) damping, the effect on the response amplitude 
is small. The same applies for h. A more influential parameter is the coefficient of the cubic stiffness term n which, 
at first approximation, is linear to the response amplitude. 
 
Effect of the fifth order term (initially hardening, then softening): 
Consider again the roll equation, this time with a fifth-order polynomial for restoring which can take better into 
account the details of the GZ curve up to large inclinations: 
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The approximate steady-state solution is:  
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We select a GZ curve (see Fig. 4) very close to that of the post-panamax containership of France et al (2001). The 
selected values for the  coefficients  and  are, respectively, -0.14 and 0.25. The amplitudes as functions of 
the parametric term , for the frequency ratios examined earlier, are shown in Fig. 5. Several changes of stability 
are taking place on each one of these curves. An interesting feature of this diagram is that it shows the behaviour at 
large angles where the fifth order term of the restoring function becomes influential. Contrast of Fig. 5 with Fig. 1 is 
enlightening in this respect. 
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Fig. 5  Amplitude of roll oscillation for 5th order restoring, assuming time 

dependence only in the linear term. The parameter is  a. 
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Requirement of limited amplitude of steady parametric rolling 
A supplementary criterion based on the steady roll amplitude may thus be introduced at this stage as a second 
requirement concerning post-critical behaviour: For the critical wave, say with 201,0.1 == λλ HL , the max roll 
amplitude should not exceed, say, 15 deg (this value is proposed by ABS; perhaps this value can be vessel specific 
depending, e.g. on lashings’ strength for a container). The combination of restoring and damping coefficients that 
satisfy the requirement of no exceedance of this limiting angle can be obtained with some manipulation of (13); or 
of (17) if judged that the later part of the  GZ  curve should also be considered (for a 15 deg limit it is unlikely to 
be necessary). 

Interfacing with the probabilistic seaway: the key is in wave groupiness 
It is well known that higher waves tend to arise in groups. As the nearly regular characteristics of waves in a group 
are essential for giving rise to fundamentally resonant motions like parametric rolling, there is a meaningful link 
between the probabilistic nature of ocean weaves and the deterministic analysis. The probability of occurrence of 
parametric rolling could be assumed to be equal to the probability of encountering longitudinally a wave group with 
sufficient run length and exceeding the threshold height (determined from the deterministic analysis), given that the 
frequency falls in the critical range (which however has to be very wide). One may use theoretical or parametric 
models for joint distributions of wave parameters but in general the required multivariate distributions are not 
available in the literature. As a matter of fact, in practical terms one has to make certain assumptions about the 
correlation of key parameters in a wave group and opt to use available bivariate distributions either of wave height 
and period, or of successive wave periods, or finally of successive wave heights.  
Ocean wave statistics suggest that height H and period T are correlated (e.g. Longuet-Higgins 1975). The following 
bivariate distribution proposed by Longuet-Higgins (1983) is based on the spectral width parameter  
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is the spectral width parameter,  are respectively zeroth, first and second moment of the wave spectrum, 210 ,, mmm
H is the mean wave height; and zT  is the mean zero-upcrossing period that is determined from spectral moments, 

00 /2 mmTz π= .  
The use of joint distributions of successive wave periods for assessing probabilistically resonant ship rolling in beam 
seas was investigated by Myrhaug et al. (2000). However, unlike parametric rolling, the wave frequency where 
resonance occurs is well defined in a beam sea because the speed of the ship does not influence the encounter 
frequency. Moreover, to be initiated, it does not require a threshold wave height, like in the case of parametric 
rolling. Hence, an approach based on the statistics of successive wave heights, i.e. the condition of having a wave 
group with heights exceeding a known critical level, seems to be a more relevant statistic for the investigation of 
parametric rolling.  
The probability to encounter a sequence of waves with height above the critical level  was considered by Blocki 
(1980) using the approach of Goda (1976). However he assumed, perhaps in the absence of data in those days, the 
occurrence of successive heights above  as independent events. This means that practically, the probability of 
encountering a certain run length was underestimated. The degree of correlation of successive wave weights 
depends on the sharpness of the spectral peak. For the effect of the spectral bandwidth on the distribution of wave 
height see for example Kimura (1980), Tayfun (1983) and Longuet-Higgins (1984).  Stansell et al (2002) found 
that, as bandwidth increases, there is a rather slight reduction in the mean run and group length, up to a bandwidth 

cH

cH

6.0=ν  beyond which they become rather insensitive (to obtain a sense of magnitude we note that 425.0=ν for a 
Pierson Moskowitz and 389.0=ν for a JONSWAP spectrum).  

According to Tayfun, the sharpness of the spectral peak reflects the variability of height between successive waves; 
and spectral peakedness is best represented by the correlation coefficient of the wave envelope  which could 
be calculated as follows: 
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( ) ( )KE ,  are complete elliptic integrals, respectively of the first and second kind. The correlation parameter κ  
could be calculated as follows (see Stansell et al. 2002 for an extensive discussion on alternative methods of 
calculation):  
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Goda (1976) has found that for swells the correlation coefficient  is about 0.6 while for wind waves it is only 
about 0.2.  

HHR

Assuming that successive wave heights follow a Rayleigh distribution, Kimura (1980) derived the following 
bivariate probability density function  for consecutive wave heights: ( 21 , HHp )
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where  is the root mean square wave height and  is the modified Bessel function of zeroth order. The 
probability of having two consecutive wave heights above the critical height  will be then: 
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where  is the marginal probability density which is Rayleigh type: ( )HpH
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The assumption of Markov chain for successive wave heights leads to the following probability function for the 
occurrence of a group with length j  and peaks higher than  which is in fact the probability of occurrence of 
parametric rolling: 

cH
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The above value should be multiplied by a susceptibility factor indicating whether the speed range of the ship 
produces encounter frequencies that overlap with the frequencies of principal resonance. 
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