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SUMMARY 
 
Non-linear equations of ship motions in waves describing the couplings between heave, roll and pitch are investigated. 
These couplings of the resonant modes should be taken into consideration in order to describe the whole spectrum of 
possible resonant conditions. In order to investigate the occurrence of combination resonance in addition to auto-
parametric resonance, the paper takes into consideration some general theoretical results regarding the possibility of 
amplification of motion in these conditions. Stability analysis is performed taking the linear solutions as a basis function. 
An idealized system is considered, which corresponds to the linear variational equation of the complete non-linear 
system when damping is not included. It can be shown that a system of non-linear equations as defined above may be 
reduced to a set of coupled Mathieu equations when the linear variational equation is taken. The set of coupled Mathieu 
equations then describes the essential aspects of the stability of the dynamic system when small perturbations are 
imposed on the basic periodic motions. This set of equations may face instabilities for more frequencies than the 
uncoupled Mathieu equation. A matrix of parametric excitation is defined. The theoretical conditions obtained for the 
occurrence of combination modes are in the form of non-symmetry conditions regarding elements of the matrix of 
parametric excitation. Explicit expressions for boundaries of stability are given. 
 
NOMENCLATURE 
 
a  Wave amplitude 

0A  Waterplane area at average hull position 

0∇  Volume at average hull position 

1∇  Volume at instantaneous hull position 
∇  Incremental volume for displaced hull 

0fx  Centroid of waterplane at average hull position 

0bz  Vertical position of hull volume centroid  

0T  Ship draft 
m  Ship mass 

xxJ  Transversal mass moment of inertia  

yyJ  Longitudinal mass moment of inertia  

0xxI  Transversal 2nd moment of waterplane area 

0yyI  Longitudinal 2nd moment of waterplane area 

h  Height of elemental prisms 
k  Wave number 

KJI ˆ,ˆ,ˆ Unit vectors along axes of inertial frame  

kji ˆ,ˆ,ˆ  Unit vectors along axes fixed in the ship 
χ  Wave incidence 

eω  Encounter frequency 
η  Wave elevation 
ρ Density of water 
 

1. INTRODUCTION 
 
Parametric rolling of ships has continuously received 
wide attention of researchers and designers as a relevant 
instabilizing mechanism, see Paulling and Rosenberg 
(1959), De Kat and Paulling (1989), Munif and Umeda 
(2000). Much of such attention has been devoted to the 
particular configuration of longitudinal regular waves, 
either with or without speed, bow or stern waves. Roll 
motion has usually been modeled as an uncoupled 
Mathieu type equation. Considering the well-known 
existence of the Mathieu resonant frequencies, focus has 
been concentrated on the first region, the one defined by 
the proximity of encounter frequency to twice the roll 
natural frequency. 
 
The author has proposed that complete non-linear 
coupling of the resonant modes should be taken into 
consideration in order to describe the whole spectrum of 
possible resonant conditions, Neves and Valerio (2000). 
By employing Taylor series expansions up to second 
order, it was possible to express restoring actions in the 
heave, roll and pitch modes in a completely coupled way. 
Wave action was taken into consideration not only in the 
Froude-Krilov plus diffraction first order forcing 
functions, but also in second order terms resulting from 
volumetric changes of submerged hull due to wave 
passage effects. 
 
In order to investigate the occurrence of combination 
resonance, the present paper takes into consideration 
some general theoretical results regarding the possibility 
of amplification of motion in coupled systems, Cesari 
(1959), Gambill (1954). For this purpose, an idealized 
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system will be considered, which corresponds to the 
linear variational equation of the complete non-linear 
system when damping is not included. It can be shown 
that a system of non-linear equations as defined above 
may be reduced to a set of coupled Mathieu equations 
when the linear variational equation is taken. The set of 
coupled Mathieu equations then describes the essential 
aspects of the stability of the dynamic system when small 
perturbations are imposed on the basic linear periodic 
motions.  
 
A matrix of parametric excitation will then be defined. 
The theoretical conditions obtained for the occurrence of 
combination modes are in the form of non-symmetry 
conditions regarding elements of the matrix of parametric 
excitation. These conditions are important in the sense 
that they define the level of energy transfer from the 
vertical modes to the roll mode and vice-versa when co-
parametric resonance is in effect. The theoretical 
approach allows interesting analysis of hull parameters 
associated with more or less asymmetry conditions 
(intensification of excitation). Newly derived coefficients 
are presented, which establish clearly the existence of the 
necessary asymmetry conditions for the excitation of 
combination modes. It will also be demonstrated that 
combination modes cannot be excited in longitudinal 
waves, their excitation being dependent on the 
occurrence of direct excitation of the roll mode. This is a 
relevant and interesting theoretical conclusion regarding 
the dynamics of intact ships in waves associated with 
parametric resonance. Explicit expressions defining the 
boundaries of stability are derived for regions where co-
parametric resonance related to roll motion may occur. 
 
Approximated limits of stability obtained by Stoker 
(1950) for single Mathieu equations and Hsu (1963) for 
systems with multiple degrees of freedom are invoked to 
discuss the openness of regions of stability of simple 
geometrical forms. It is pointed out that limits of stability 
associated with combination parametric resonances may, 
under some circumstances, be wider than second order 
limits of the single Mathieu equation.  
 
2. EQUATIONS OF MOTION 
 
Two right-handed co-ordinate systems are employed to 
describe the motions. An inertial reference frame 
(C,x,y,z) is assumed to be fixed at the mean ship motion. 
Regular waves are assumed to travel forming an angle 
χ  with ship course. Another reference frame 
( z,y,x,O ) is fixed at the ship having the yx  plane 
coinciding, for the ship at rest, with the undisturbed sea 
surface, z -axis passing through the vertical that contains 
the center of gravity. The two systems coincide when 
excitations are absent. See Figure 1. 

 
Figure 1: Co-ordinate axis and definition of motions 

 
Non-linear equations of motion considering the three 
restoring degrees of freedom may be expressed in matrix 
form using a displacement vector: 

T])t()t()t(z[)t(q θφ=
r

 
defining the heave translational mode together with the 
roll and pitch angular modes, see Figure 1: 

)t,,,(Q),,,z(Cq)(B~q)A~M~( ew ωχηθφφ a
rrr

&&
r
&& =+++   (1) 

Hull inertia M~  is a diagonal 3X3 matrix. Its elements 
are: m, the ship mass, yyxx J,J the mass moments of 

inertia in the roll and pitch modes, respectively, taken 
with reference to center O. Elements in matrix A~  
represent hydrodynamic added masses, moments and 
products of inertia terms. Damping terms )(B~ φ&  may 
incorporate non-linear terms in the roll equation and 
describe hydrodynamic reactions dependent on ship 
velocities, Himeno (1981). The hydrodynamic inertia and 
damping matrices are expressed respectively, as: 
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and vector ),,,z(C ηθφ
r

describes non-linear positional 
forces and moments due to relative motions between ship 
hull and wave elevation )t(η . To second order, 
restoring terms due to ship motions in calm water and 
wave passage terms may be split into two separate 
actions that can be summed to obtain the complete 
relative vertical displacement. Thus, positional forces 
and moments are taken as:  
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where, on the right hand side, the first vector represents 
purely hydrostatic reactions, whereas the second vector 
describes second order wave actions. On the right hand 
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side of equation (1), generalized vector wQ
r

 represent 
linear wave external excitation, usually referred to as the 
Froude-Krilov (first order wave actions) plus diffraction 
wave force terms, dependent on wave heading χ , 

encounter frequency eω , wave amplitude a  and time t: 
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Second order wave actions, proportional to hull 
displacements, will be considered on the left hand side of 
the equations of motion, being named wave passage 
effects. Due to its mathematical affinity with the purely 
hydrostatic terms, these are written as a second vector 
contribution to C

r
 in equation (2).  

   
3. HYDROSTATIC RESTORING TERMS 
3.1  RESTORING FORCE 
 
Restoring force is given by the difference between 
weight and instantaneous buoyancy in calm water. 
Vectorially:  

1H EWF
rrr

+=  
where ship weight:  

K̂gW 0∇−= ρ
r

  

is directed vertically ( K̂,Ĵ,Î are unit vectors defined in 
the inertial reference frame). Analogously, instantaneous 
buoyancy force is given as: 

K̂)(gK̂gE 011 ∇−∇=∇= ρρ
r

 
such that  

K̂gFH ∇−= ρ
r

    (3) 
 
In the above expressions, 1∇  is the instantaneous 

submerged volume, 0∇  is the submerged volume in the 

average upright condition, and ∇ is the instantaneous 
incremental volume due to hull displacements in heave, 
roll and pitch. 
 
3.2  RESTORING MOMENTS 
 
The vector representing the restoring moment is defined 
with respect to O (see Figure 2). The weight (equal to 
buoyancy in the average condition) is applied in G and 
buoyancy force in 1B , the instantaneous centroid of 
hydrostatic pressures. Restoring moment is then given as: 

]OGK̂OBK̂)([gM 010 ×∇+×∇−∇−= ρ
r

 
 

Noting that 0B  is the volume centroid at average 

position and k̂ is the z  oriented unit vector (defined in 
the coordinate system fixed in the body) then: 

1001 BBOBOB +=   

k̂)TKG(OG 0−=  

k̂)TKB(OB 000 −=  

 
Figure 2: Hull section in a general displaced waterline 
 
where 0T  is the ship draft in the average upright 

position. Taking the projections of k̂ on the inertial 
reference frame, and considering, for simplicity, small 
angles between the reference frames, the restoring 
moment may then be rewritten as: 

−−∇+−∇−= ]Ĵ)KGKB(Î)KGKB([gM 0000 θφρ
r

]BBK̂)BBOB(K̂[g 100100 ×∇++×∇− ρ  
 
It is convenient to define: 

MMM 0
rrr

δ+=     (4) 
where: 

)ĴÎ)(KGKB(gM 000 θφρ +−∇−=
r

 (5) 

]BBK̂)BBOB(K̂[gM 100100 ×∇++×∇−= ρδ
r

  

)BBK̂BBK̂OBK̂(g 101000 ×∇+×∇+×∇−= ρ  (6) 
 
Firstly, one notes that the first vector product in the 
above expression is given as: 

)ˆˆ)((ˆ)(ˆˆ
0000 JITKBkOBKOBK θφ +−∇=×∇=×∇    (7) 

and secondly that the last term in the incremental 
moment is of a lower order of magnitude than the others, 

since both K̂∇ and 10 BB are small quantities.  
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Next step in the derivation will be to find adequate 

expressions for K̂∇ and 10 BB as functions of the 

relevant variables, )t(),t(z φ and )t(θ , that is, the 
displacements in heave, roll and pitch, respectively. 
 
4. HYDROSTATIC ACTIONS UP TO SECOND 
ORDER 
 
It should be noted that in order to retain all couplings 
between the restoring modes, the characteristics of a 
generic waterplane must be considered. A generic 
waterplane does not correspond to equivolumetric 
inclinations. If the hull is not wall-sided, the application 
of a pure roll angle will also introduce a net vertical 
force, due to immersion and emergence of different 
volume wedges. 
 
Referring again to Figure 2, vertical elemental prisms 
may be employed to describe the volumetric changes 
introduced by a general displacement. The height of each 
elemental prism has three contributions: 

θφ AA xyzh −+=     (8) 

where )y,x( AA is a point of the generic waterplane. 
The total volumetric change may be obtained by 
integrating all vertical prisms over the complete 
instantaneous waterplane area: 

∫∫ ∫∫∫∫∫∫ −+==∇
A A AAAA

dAxdAydAzhdA θφ  (9) 

 
The double integrals describe some well-known 
geometric properties of the waterplane area: 

∫∫=
A

dA),,z(A θφ - waterplane area, 

dAx),,z(Ax
A Af ∫∫=θφ -longitudinal first moment, 

dAy),,z(Ay
A Af ∫∫=θφ - transversal first moment. 

 
With this nomenclature, the total volumetric change is 
then rewritten as: 

θθφφφθφ ),,z(Ax)(Ayz),,z(A ff −+=∇   (10) 

and it is noted that in fact  displacements z and θ  give 
no contribution to fAy . Yet, this function does change 

with roll angle for hulls with inclined sidewalls. 
 
Consider now the volumetric moments associated with 
the roll and pitch modes. These will be expressed as:  

∫∫∫∫ +−=×∇
A AA A100 hdAxĴhdAyÎBBK̂  

 
Substituting h defined in equation (8) into the above 
integrals, and recalling that the transversal static moment 
of waterplane area is dependent only on roll 
displacements, the volumetric moment is expressed as: 
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where the following functions have been defined for the 
generic waterplane area: 

∫∫=
A

2
Axx dAyI -transversal moment of inertia, 

∫∫=
A

2
Ayy dAxI -longitudinal moment of inertia, 

dAyxI
A AAxy ∫∫= -product of inertia. 

 
It is pointed out that the moment φφ )(I xy  in equation 

(11) exists whenever the centroid longitudinal coordinate 
of the incremental volume φφ )(Ay f  appearing in 

equation (10) does not coincide with the longitudinal 
centroid of the average volume 0∇ .  
 
Compiling equations (3 to 7, 10 and 11) and multiplying 
equations (3) and (4) by (-1), the complete expressions 
for the first components of vector C

r
 given in equation 

(2) in heave, roll and pitch, representing purely 
hydrostatic reactions, result in: 
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Noting that )(y f φ  and )(I xy φ  defined for inclined 

waterplanes are odd functions of the roll angle, the 
following multivariable series expansions (to second 
order force and moments) are obtained: 
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Figure 3: Different trends for centroids of inclined 
waterplanes: fx and fy  against roll angleφ . 

 
Figure 3 illustrates the difference in trend between the 
longitudinal and transversal position of the centroid of a 
generic transversally inclined waterplane. Clearly, the 
roll derivative of fx  is zero, whereas the roll derivative 

of fy  is not. 
 
Introducing the series expansions in the given 
expressions of HH K,Z and HM results in: 
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where 000b TKBz −=  is the vertical coordinate of 
the volume in the average position (a negative quantity in 
the assumed reference axis system). 
 
In this case, the equations of motion are then given as: 
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noting that in the above equation, 0C~  is the linear 

restoring matrix, ),,z(C~1 θφ  and )t(C~wp  represents 

second order wave actions (wave passage correction), 
respectively. With the nomenclature employed in the 
present paper for derivatives, matrix 0C~  is given as: 
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where the linear restoring coefficients are: 
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The second order restoring terms, when grouped in 
matrix form become: 
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where, taking into consideration the above expressions, 
equations (15, 16 and 17) of HH K,Z and HM , it may 
be recognized that: 
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To simplify the notation, the vertical bar in the 
derivatives has been dispensed. This simplification in 
notation will be extended to the remaining sections of the 
paper. 
 
It is pointed out that coefficients φzK and φθK given 
above describe (to second order) the internal transfer of 
energy from the vertical modes to the roll motion. They 
are both composed of two terms. The first ones represent 
the variation of the roll restoring moment due to changes 
in the moment of inertia of the waterplane area. These 
terms are zero for wall-sided hulls. The second terms 
represent the variation of the restoring moment due to the 
change of submerged volume induced by the vertical 
oscillations. These terms are effective even in the case of 
wall sided hulls. Complementarily, the derivative 

φφZ regulates the transfer of energy from the roll mode 

to the heave mode and φφM mediates energy transfer 
from roll to pitch. 
 
5.  EXPRESSIONS FOR COMPUTING THE 
DERIVATIVES 
 
It is possible and relevant to relate the derivatives given 
above to longitudinal distributions of hull characteristics. 
Paulling and Rosenberg (1959) presented similar 
derivations, but as mentioned before, they did not 
consider all the possible coupling terms. Specifically, it 
is important in the present context to take into account 
the influence of roll motion upon the heave and pitch 
modes. 
 

When deriving these expressions with respect to φ,z  
and θ , it will be observed that the following rules of 
derivation are to be applied in the case of angular 
displacements in roll and pitch: 
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and from the general transformation matrix between a 
rotated and a fixed frame of reference it can be deduced 
that in the case of roll: 
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and in the case of pitch: 
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and it is also observed that  1
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With these results, the expressions for the non-vanishing 
second order hydrostatic derivatives can be derived. With 
the integrations along the ship length being defined from 
after to fore perpendicular: 
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where use was made of equation (20). With this result 

θ∂
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 is expressed as the longitudinal distribution of 
z
A
∂
∂

.  

 
It should be noticed that at the average hull position the 
terms fAy  and xyI  are zero. Yet, for a hull inclined of 

an angleφ  these terms will not be zero. Their derivatives 
with respect to φ  taken at the origin are not zero. In fact, 
given the definition of the lateral static moment of water-
plane area, and taking its derivative with respect to roll 
angle, results in: 
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where use was made of equation (19) describing 
derivation with respect to roll. Similar derivation may be 
applied to the case of xyI  and the result is: 
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which may be understood as a first moment of the 

longitudinal distribution of 
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∂ )Ay( f
 with respect to 

the origin. Applying the integration procedure used 
above, all other second order derivatives may then 
expressed in terms of the longitudinal distribution of 

flare at average waterline, 
z
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. Hence, the following 

expressions may be established: 
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∫ ∂
∂

−=
∂
∂ FP

AP
2xx xd

z
yyx2I

θ
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Following these results, it can be observed that some 
identities do exist between some of the derivatives 
previously derived: 

z∂
∂

−=
∂
∂ )Ax(A f

θ
       ;       

z∂
∂

−=
∂

∂ yyf I)Ax(
θ

 

z
I

2
1)Ay( xxf

∂
∂

=
∂

∂

φ
       ;        

θφ ∂
∂

=
∂

∂ xxxy I
2
1I

 

such that there are in fact only six second order 
derivatives to be computed. 
 
As a very simple example, in the case of a transversally  
inclined  triangular constant cross-section prism, it can be 
easily demonstrated that the difference in area of the 
immersed and emerged wedges is: 

φ

φδ
22

22

tan)zdyd(1

tan)zdyd(yA
−

=  

where y is the half-breadth of the prism, and 
0T
y

zd
yd
= . 

This exact expression should be compared with the 
simplification resulting from a Taylor series expansion 
based on the cylinder average position. Applying a 
Taylor series expansion to the above expression and 
retaining terms up to second order results in: 

22 )zd/yd(yA φδ =    
and this expression demonstrates that in the case of a 
triangular prismatic body the vertical hydrostatic force 
due to roll motion is an even function of the roll angle, 
and this verifies the previous general expression derived 
for a general hull form. In fact, on applying the general  
formulation, equation (15), to the case of a cylinder with 
constant cross-section inclined of an angle φ , integration 
is easily performed, resulting in: 
 

22
p

FP
AP

222

0

f
H

)zd/yd(ygl

.xd
z
yyg.

)y.A(
)(Z

φρ

φρφ
φ

ρφ

=

=
∂
∂

=
∂

∂
= ∫g  

where pl is the length of the cylinder. Thus, this is a 

particular case of the more general expression given 
previously for a generic hull form.  

0
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2
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Exact

Taylor

φ

)(φHZ

 
Figure 4: Hydrostatic heave force due to roll for 
prismatic body with triangular cross-section.  
 
Figure 4 illustrates the vertical hydrostatic force in the 
case of a prism with triangular cross-section inclined of 
an angle φ , an even function passing through the origin. 
The figure shows the curves for the exact solution and 
for the derivative approximate solution up to second 
order, for breadth my 0.22 = and flare equal to 45 
degrees. 
 
6.  WAVE PASSAGE 
 
Wave passage of arbitrary direction along the hull is 
modeled as a change of the hull average submerged 
volume defined by the instantaneous position of the 



 
8

wave. Employing a similar nomenclature to the one used 
for the hydrostatic terms and considering the restoring 
modes only, the following terms are adopted, Neves and 
Valerio (2000): 



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θηφηη z

MMM
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ZZZ

)t(q)t(C~

M
K
Z

z

z

z

wp

WP

WP

WP
r (21) 

where the time-dependent elements are defined as: 

∫ +−=
FP

AP
SBPSz xd)(

zd
ydZ ηηρη g  

∫ +−=
FP

AP
SBPS

2 xd)(
zd
ydyK ηηρφη g  

∫ +−=
FP

AP
SBPS

2 xd)(
zd
ydxM ηηρθη g  

ηφη ηηρ z

FP

AP
SBPS Kxd)(

zd
ydyZ =−−= ∫g  

∫ =+=
FP

AP
zSBPS Mxd)(

zd
ydxZ ηθη ηηρg  

∫ =−=
FP

AP
SBPS Mxd)(

zd
ydyxK φηθη ηηρg  

where subscripts PS and SB stand for portside and 
starboard wave elevation given by:  

)t))(siny)cos(x(kcos( eSB,PS ωχχ +±= aη  
and k represents wave number. 
 
7.  VARIATIONAL EQUATION 
 
Stability analysis is carried out by taking the linear 
variational equation of the system defined by equation 
(18). The linear variational equation is obtained by 
considering that the motion may be defined as being the 
sum of a steady function plus a perturbation imposed to 
this basis function: 

)t(u)t(q)t(q 0
rv)r

+=  

such that )t(q0
r)

 is the solution of the linear system 
associated with the complete non-linear problem, 
equation (18). In addition to this, )t(ur  is a perturbation 
superimposed to the linear solution. If the solution of the 
linear system is considered stable, then the solution of 
the non-linear system near this solution will be stable if a 
solution of 0)t(u →

r
 when ∞→t , and is unstable 

otherwise. 
 

The solution of the linear equations is well known. In this 
case, the anti-symmetric equations are uncoupled from 
the other three symmetric equations. On deriving the 
linear variational equation for the non-linear system 
given above, a coupled linear system with time- 
dependent coefficients is obtained: 

0u)]t(C~)t(C~C~[u)]t(B~B~[u]A~M~[ wpp01 =++++++
rr

&
r
&&  (22) 

In the present mathematical model matrix )t(B~1 , 
representing internal damping, contains one single time-
dependent element representing dissipation of energy 
associated with the second order term in the roll damping 
moment. Matrix )t(C~p  is composed of oscillatory terms 

at the excitation frequency and may be expressed as: 
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where: 
)tcos(z)t(z 3e0 νω +=)  

)tcos()t( 4e0 νωφφ +=
)

 

)tcos()t( 5e0 νωθθ +=
)

 
are oscillatory functions representing the linear responses 
of the vessel in heave, roll and pitch. It is well known 
that at this level the equations of the groups of symmetric 
and anti-symmetric modes are not coupled to each other. 
 
The matrix given above represents the contributions to 
parametric excitation resulting from different couplings 
of modes. In addition to this, matrix )t(C~wp  represents 

the contributions to parametric amplification due to 
volumetric changes occurring as a consequence of wave 
passage along the hull.  The sum of these two matrices 
gives the final matrix of parametric excitation: 

)t(C~)t(C~)t(D~ wp0 +=  

which is dependent on the wave amplitude a. Equation 
(8) may be rewritten as: 

0u)]t(D~C~[u)]t(B~B~[u]A~M~[ 001 =+++++
rr

&
r
&&          (23) 
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This is a linear system with time-dependent coefficients. 
It will be noticed that damping has influence on limiting 
amplifications resulting from resonances. As interest here 
is centered on demonstrating the existence of sub or 
super harmonics, damping need not be considered in the 
following theoretical developments. 
 
8. COUPLED LINEAR SYSTEMS WITH 
PERIODIC COEFFICIENTS 
 
The equation under study here is, in matrix form: 

0u)]t(D~C~[u)A~M~( 30 =+++
r&&r ε               (24) 

where ε is a small parameter and:  
)t(D~)t(D~ 03 =ε                 (25) 

is a square matrix. 
   
This system may be conveniently expressed in diagonal 
form. Pre-multiplying equation (24) by the inverse 

matrix 1)A~M~( −+ and defining a new set of variables 

obtained from yT~u rr
= , where T~  is a linear 

transformation matrix, the following canonical form may 
be given, using indicial notation: 

3,2,1j;0y).t(yy j
3n

1i
jij

2
jj ==++ ∑

=

=
ψεσ&&    (26) 

where the coefficients jσ  are the eigenvalues of system 

(24) for 0=ε  and: 
tsinqtcosp)t( eijeijij ωωψ +=   

 
Note that for the case where the time-dependent matrix is 
a diagonal matrix, equation (26) reduces to three 
uncoupled Mathieu equations, in heave, roll and pitch. 
Now, with general systems like the one described by 
equation (26) for 0≠ε , the situation may be quite 
distinct. 
 
Hale (1954), Gambill (1954) and Cesari (1959) have 
studied nn× systems of the type of equation (26). It has 
been demonstrated that such systems may present many 
more resonant frequencies than the case 1n = , i. e. the 
Mathieu equation. Gambill (1954) has given explicit 
criteria for parametric instability and for boundedness of 
the solutions: 
 
If:  
 ijem σσω ±≠   (i, j =1, 2, 3 ; m=1,2 ... )          (27a)  
together with either: 
 )()( tt ijij −=ψψ      (i, j =1, 2, 3)                    (27b) 
or: 
 )()( tt jiij ψψ =         (i, j=1, 2, 3)                           (27c) 

then all solutions of the matrix equation (26) are bounded 
in ],0[ +∞ for sufficiently small ε . 
 
Condition (27a) assures that no resonance occurs 
between the small periodic restoring terms 

∑
=

=

3n

1i
iji yψε and the harmonic oscillations of the 

differential equations:  

3,,2,1j;0yy j
2
jj L&& ==+σ  

 
Condition (27a) should be compared with the one 
obtained when only one degree of freedom is assumed:  

σω 2m e ≠  (m = 1, 2, ... ) 
see  Stoker (1950), Paulling and Rosenberg (1959). 
Conditions (27b) and (27c) are essentially conditions of 
symmetry assuring the boundedness of all solutions of 
equation (26) under condition (27a). If these additional 
conditions are not satisfied, it is likely that equation (26) 
with n>1 will have unbounded solutions in ],0[ +∞  for 

small ε . 
 
9. CO-PARAMETRIC RESONANCE 
 
Equation (26) represents a set of coupled Mathieu 
equations. According to conditions (27), the occurrence 
of co-parametric resonance depends on the structural 
form of matrix )(~ tψ . Considering the derivatives 
obtained previously in Sections 5 and 6 it may be noticed 
that in general the matrix of parametric excitation is non-
symmetric. Although )t(C~wp , the matrix of time- 

dependent wave passage terms is symmetric, matrix 
)t(C~P  is not. This may be concluded from comparison 

of the off-diagonal terms of matrix )t(C~P , obtained in 
Section 7. Considering the structure of this matrix it is 
seen that in general for a hull all elements of )(~ tψ  are 
different from zero. Elements along the main diagonal 
intervene in auto-parametric resonance, whereas off-
diagonal elements define the level of excitation of 
combination modes (co-parametric resonance). This is 
indicated in Figure 5, which illustrates the fact that the 
heave/roll and roll/pitch co-parametric resonances derive 
from the product of pairs of oscillatory functions having 
the first order roll motion as common multiplier. 
 
For the co-parametric resonances associated with the roll 
mode and considering the off-diagonal terms in matrix 

)t(C~P  it may be seen that there is no co-parametric 
resonance for wall-sided hulls. In this case no vertical 
force would exist and the second order coupling of roll 
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with the vertical modes would disappear. Additionally, 
there is no co-parametric resonance for longitudinal 
waves, since in this case there is no (first order) roll 
motion )t(φ

)
. In other words, roll co-parametric 

resonance depends on the occurrence of direct excitation 
of the roll motion. 

 
Figure 5: Role of elements of parametric resonance 
matrix on the development of harmonics. 
 
In general, the algorithms for obtaining the limits of 
stability of dynamic systems like equation (26) may be 
complicate, see Hsu (1963). But taking into account that 
for the ship hull problem the elements )t(12ψ , 

)t(21ψ , )t(23ψ  and )t(32ψ  have the same phase 
difference with respect to the exciting waves as the roll 
motion, employing first-approximation analysis, simple, 
explicit expressions may be given for the limits of 
stability corresponding to the co-resonances of the type 

5,3k,4ke =±= ωωω , see Hsu (1963): 
 a) The system is unstable if the condition 

3,1,
2

)(
42

22
42 =<+−

+
+ k

pp

k

kk
ke ωω

εωωω      (28) 

for the sum type of co-parametric resonance, stable 
otherwise; 
b) The system is unstable if the condition 

3,1k,
pp

2
)(

42k

2kk2
42ke =−<−−

+
+ ωω

εωωω     (29) 

for the difference type of co-resonance, stable otherwise. 
  
Hence, an important feature of the coupled Mathieu 
system  obtained for the ship problem derives from the 
fact that for the co-parametric regions related to roll, 
where the time-dependent functions have the same phase. 
It is then observed that either sum or difference type may 
occur, depending on the structure of the off-diagonal 
terms. 
 
In the above expressions the stability boundaries for the 
two types are obtained as linear functions of the 
smallness parameter. For the uncoupled Mathieu 
equation the well known Stoker’s approximation, see 

Stoker (1950), of stable and unstable regions defines, for 
m=1 (the first region of instability), the limits of stability. 
This is considered the most important region. How wide 
is the angle inside the unstable area is governed, for the 
ship problem, by the heave and pitch motions transfer 
functions and hull parameters. For m>1, following Stoker 
power expansions, limits of stability corresponding to the 
tuning 4em ωω = are obtained as higher order 
functions of the  small parameter ε . Yet, the limits of 
stability for the co-parametric resonances 

jie ωωω ±=  will be defined as straight lines, see 

equations (28, 29), as suggested in Figure 6 for the 
difference type frequencies. In Figure 6 shaded areas 
correspond to unstable regions. It is schematically 
indicated that the 42ω  region has a large opening angle.  
 
Considering again the simple example of a prismatic 
triangular shape, for the heave/roll coupling, it can be 
demonstrated that the angle defining the width of the area 
for the auto-parametric resonance ( 42ω  region) is 
defined by the following law of proportionality: 
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On the other hand, the same angle for the co-parametric 
resonance ( 43 ωω −  region) will be given by: 
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In the above expressions 
zd
ydy2

z
I 2xx =
∂
∂

, and 

ijψ represent amplitude of harmonic functions )t(ijψ . 

 
Figure 6: Limits of stability for auto and co-parametric 
resonance.   
 
It may be observed that these two angles are dependent 
on hull characteristics and transfer functions of pertinent 
motions. It is conceivable that for ships with large roll 
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motions (e.g., near 4e ωω =  in oblique seas) the angle 

34α  may be smaller, but of comparable order to 44α , if 
hull forms and wave incidence retain some 
characteristics defined above, mainly the flare. 
Additionally, co-parametric area of instability (linear 
limits) may be more open than the m=2 region defined 
for the uncoupled Mathieu equation, which in fact has 
width zero for small values of ε . 
 
10. CONCLUSIONS 
 
The effects of non-linear couplings occurring between 
heave, roll and pitch modes have been examined in this 
paper. Complete expressions for the hydrostatic actions 
up to second order have been implemented in the form of 
derivatives taken with respect to the independent 
variables. In addition, simplified expressions have been 
derived for these derivatives in terms of longitudinal 
distributions of relevant geometric hull properties. 
 
For hull forms that are not wall-sided, angular 
displacements in roll produce non-equivolumetric 
inclinations. The vertical force produced by this roll 
inclination, and the pitch moment produced by a non-
symmetric longitudinal distribution of vertical forces 
along the different cross-sections of the ship, will then 
completely couple, to second order, the vertical modes to 
the roll mode through hydrostatic effects. Expressions for 
these non-linear couplings have been derived. The 
analytical methodology employed in the derivation of the 
equations of motion clearly facilitates interpretation of 
the physics behind the mechanism and the disclosure of 
instability of the non-linear motion. 
 
It is demonstrated that the linear variational equation of 
the original non-linear system may be reduced to a set of 
coupled Mathieu equations. The nature of the couplings 
in relation to wave direction is retained in the analytical 
procedure. Criteria for the occurrence of parametric 
resonance and boundedness of solutions are given. It is 
then concluded that there are more possible resonant 
conditions in this case than when the uncoupled Mathieu 
equation is invoked to represent the dynamics of ship roll 
stability. The combined co-resonant modes defined by 
sums and differences between the system’s eigenvalues 
are then qualitative characteristics very distinct from the 
known auto-parametric resonance.  
 
It is also demonstrated that the time-dependent off-
diagonal terms associated with co-parametric resonance 
of the roll motion have all the same phase. This feature 
implies that either sum or difference types of combined 
resonance may take place, depending on the structure of 
the matrix of parametric excitation. Basic features of 
these instability regions are discussed for a simple 
geometrical form. It is shown that limits of stability for 
co-parametric resonance are obtained for first order 

values of the smallness parameter. At the same time it is 
pointed out that, in contrast, limits of stability 
corresponding to ,...3,2m,m 4e ==ωω  for the 
uncoupled Mathieu equation can be obtained as 
perturbed solutions only at higher levels of 
approximation of the smallness parameter.  
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