
 
1

Proceedings of the 6th International Ship Stability Workshop, Webb Institute, 2002 
 

NONLINEAR AND STOCHASTIC ASPECTS OF PARAMETRIC ROLLING MODELLING 
 

Alberto Francescutto and Gabriele Bulian 
(*) Department of Naval Architecture, Ocean and Environmental Engineering, University of Trieste, Italy, e-mail: 

francesc@univ.trieste.it 
 
 

 
SUMMARY 
 
This paper addresses, starting from an extensive series of tests in longitudinal regular waves (already done) and irregular 
waves (in progress), the problems connected with the threshold formulation for parametric rolling and its amplitude 
modelling above threshold. Both head and following waves have been considered, also in view of the greater attention to 
head sea conditions called during IMO/SLF discussion on the revision of the Intact Stability Code. Particular attention is 
given in the regular wave case to the nonlinear damping, nonlinear restoring and nonlinear parametric excitation terms. The 
mathematical models so developed are “compared” with experimental results by means of an ad hoc parameter estimation 
technique. 
It is on the other hand well known that several different thresholds can be proposed in the case of irregular waves and that 
the nonlinear modelling of roll motion variance above threshold is at present not properly addressed. Here too, a series of 
experiments will be conducted in the presence of narrow band irregular waves having the bandwidth as parameter. The use 
of approximate analytical techniques will allow to obtain a mathematical description of the nonlinear parametric rolling. 
 
NOMENCLATURE 
 
SLF is the Stability, Load Lines and Fishing Vessels Sub-

committee of MSC 
MSC is the IMO Maritime Safety Committee 
IMO is the International Maritime Organisation 
φ instantaneous roll angle, transversal inclination 
A, B, C, roll motion amplitudes 
T ship draught  
B ship beam 
sw wave steepness 
T0 natural roll period 
xG longitudinal centre of gravity from mid perpendicular 
KG height of centre of gravity on keel 
GM initial metacentric height 
µ coefficient of linear roll damping 
ν nondimensional coefficient of linear roll damping 
µeq coefficient of the equivalent linear roll damping 
νeff effective linear roll damping 
β coefficient of quadratic roll damping 
δ coefficient of cubic roll damping 
∆ ship displacement 
GZ righting arm 
ω0 natural roll frequency 
ωe encounter wave frequency 
ωd natural roll frequency in the presence of damping 
p1, p2, pave coefficients of parametric excitation 
α3 coefficient of cubic arm nonlinearity of righting arm 
L ship length at waterline 
Lbp ship length between perpendiculars 
v ship speed 
m0, m1, m2 statistical moments of spectrum 
sbw spectral bandwidth 

h(t)  stochastic process representing GM fluctuation in 
random waves 
α(t) phase 
S0 white noise level 
Sz spectral density 
ωm modal frequency of filter 
γ damping of filter 
 
1. INTRODUCTION 
 
A research project was recently ended in collaboration 
with INSEAN – Italian Ship Model Basin on the 
parametric rolling in regular longitudinal waves [1] and a 
new one is starting on parametric rolling in irregular 
longitudinal waves. The first was aimed at a better 
understanding of the nonlinear modelling, the effect of 
damping on the threshold and on the rolling amplitude 
above threshold. The second one is aimed at a better 
understanding of the nonlinear modelling in the presence 
of irregular sea, of the threshold definition and of the 
probability of exceedence of “dangerous” roll amplitude in 
realistic sea conditions. In both cases the head sea 
condition will be considered due to the easier checking in 
short facilities like the towing tank of Trieste University 
and in view of the entailed dangerous phenomena whose 
presence has been dramatically confirmed recently. It is 
indeed a matter of fact that, apart the addressing of head 
sea condition as a potentially dangerous one made by one 
of the authors [2-5] this subject was previously present 
very seldom in the literature [6,7,14,15]. Several written 
contributions to recent IMO/SLF call for greater attention 
to the parametric rolling in head waves [8,9] in the existing 
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regulation concerning sailing in following/quartering 
waves [10]. 
 
1.1 RULES ARE CHANGING - ANALYTICAL 

RESULTS VERSUS PERFORMANCE RULES 
 
It is again a matter of fact that most part of international 
regulations as regards safety from ship capsizing or 
sinking, is written in the form of prescriptive rules and 
usually in quite simplified way. There is at present an 
opening towards alternate methods of assessing equivalent 
levels of safety and a call for a change from prescriptions 
to performance. This last approach will take several years 
to be developed and it is not clear if prescriptive rules will 
survive along it and beyond in a parallel course or not. 
This is better discussed in the companion paper [11]. Here 
we just want to present some contribution made by our 
research group towards the development of nonlinear and 
stochastic approach to the problem of parametric rolling, 
made in analytical terms, eventually using the well known 
perturbative approximate methods. It is the opinion of the 
authors, indeed, that at least in the short term a 
contribution to develop tools for the evaluation of the 
expected maximum roll amplitude in longitudinal waves 
will be valuable in the frame of increasing the safety and 
seakindliness of transportation at sea. 
It is indeed again a matter of fact that a great effort was 
devoted in the last 25 years, since the first Stability 
Conference, to parametric rolling. Nevertheless no simple 
rule regarding motion amplitude/acceleration exceedance 
was developed to be used at design stage as it was done on 
the contrary in IMO Res. A.167 and A.562. The only 
safety measure approved was the MSC707 regarding ship 
handling [10].  Many of the interested parties simply don’t 
believe that parametric rolling is a real danger to avoid 
which it is necessary to incorporate “additional” safety at 
design level. Others think parametric rolling is a matter of 
seakeeping and not of stability, like in the concluding 
remarks of 23rd ITTC. 
 
1.2 CONTENTS OF THIS PAPER 
 
Some results from the first research projects will be firstly 
presented; in the following the preliminary analysis made 
on the problems, partly open, entailed by the presence of  a 
stochastic sea will be given. 
Several ship models were tested. While full results can be 
found in the project report [1], here the case of a RoRo 
passenger ship, called TR2 (ship model hull # C73-97), 
will be presented. The body plan and the main data are 
reported in Fig. 1 and Table. 1 below. 
 
2. PARAMETRIC ROLLING IN REGULAR 

WAVES 
 
2.1 MATHEMATICAL MODELLING 
 

As it is often done in the analytical studies devoted to 
parametric rolling, the problem is split in two parts: 
- the evaluation of the wave-ship interaction to obtain 

the parametric excitation to be included in the roll 
motion equation to modify the restoring term; 

- the analysis of the solutions of the roll motion 
equation, their stability and the amplitude as a 
function of ship speed. 

 
Table. 1. Model and full scale data of RoRo pax 
TR2 used in the experiments. 

 
RoRo pax - C73-97 

 
Model data (scale 1:50):  ∆=61.720 kgf  GM=0.0173 m  
KG=0.1732 m T=0.1175 m   xG=-0.072 m T0=2.30 s  
ω0=2.73 rad/s (average value assumed 2.7 rad/s) 
Lbp=2.644m 
 
Full scale data:  ∆=7715 tf  GM=0.865 m  KG=8.660 
T=5.875 m  xG=-3.599 T0=16.26 s  ω0=0.386 rad/s 
(average value assumed 0.382 rad/s)  Lbp=132.2 m 

 

 
Fig. 1. Schematic body plan of the ship TR2. The 
floatation line (full loading condition) and the 
vertical position of the centre of gravity is also 
indicated. 

 
The problem is thus modelled as a 1.5 degrees of freedom, 
since the first action above includes, in principle the 
vertical motions of the ship (eventually in the equilibrium 
case assumed in the fixed or free trim hydrostatic 
computations in the wave) in addition to the wave. As a 
result, the following model was considered: 
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Here only the cubic term α3φ3 was retained in the righting 
moment. Posing 't2te =ω  and preserving the initial name 
for the independent variable, one has: 
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Several alternate forms of Eq. 1 and 2 were proposed by 
different authors (for a review of the extensive literature 
see [1]). In the following the mathematical modelling 
based on Eq. 2 will be called “uncoupled”, to distinguish 
from other where the time dependent and the nonlinear 
angle dependent terms in the righting arm are “coupled”, 
as in: 
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Anyway, the main features are: 
- nonlinear damping. This can be made by a linear plus 

cubic or by a linear plus quadratic model, provided that 
they are adjusted to dissipate the same energy per cycle 
(of course this makes the coefficients amplitude-
dependent); 

- nonlinear restoring, in this case limited to cubic degree 
to avoid excessive analytical complications (this is a 
non-essential choice if use is made of codes for 
algebraic equation handling); 
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Fig. 2. Difference between the righting arm 
corresponding to wave through amidships and wave 
crest amidships as a function of the transversal 
inclination. The curves refer to wave steepness 
sw=1/30, 1/50, 1/100, 1/200, 1/300. 
 

- nonlinear effect of vertical motions and waves on 
righting arm modulation (factor p2). This is an 
assumption specific to this mathematical model and is 
based on the observation that the difference between 
the two extreme values of righting arm as a function of 
inclination (roughly wave crest and wave through 
amidships) grows to a maximum value and then goes 
to zero in a way that the parametric forcing p can 
roughly be approximated by a quadratic function. In 
Fig. 2 this behaviour is reported for the examined ship. 

 
2.2 THE THRESHOLD FOR PARAMETRIC 

ROLLING 
 
Eq. 2 is a homogeneous one, so that the upright position is 
always an equilibrium solution (trivial solution 0)t( ≡φ ). 
Its stability depends on the actual values of the linear 
damping coefficient µ, parametric forcing (both the linear 

coefficient 
*GM

GM
p1

δ
=  and the nonlinear one p2) and on 

the range of encounter frequency eω , which in turn 
depends on selected wave length, ship speed V and 
heading. The threshold for instability of upright position, 
i.e. for the onset of parametric rolling, is usually obtained 
starting with the linear version of Eq. 2. In spite of the 
apparent simplicity, linear Mathieu equation is very 
difficult to solve in finite terms. Anyway, the threshold 

values for 
*GM

GMδ  for the excitation of parametric rolling 

in different instability zones, corresponding to the 
frequency ratios: 
 

0e n
2 ωω ≈      (4) 

 
with n integer have been computed by several authors. In 
Fig. 3 the regions of instability in the absence of damping 
corresponding to n=1, 2, 3 are reported. As one can see, 
the width of the regions is sharply decreasing by 
increasing n. In the absence of damping, the borders of the 
instability region cross on the x axis, so indicating that for 
encounters frequencies given by the exact synchronism 
condition: 
 

0e n
2 ωω =      (5) 

 
the upright position is unstable even in the presence of a 
negligibly small perturbation. The presence of damping 
changes quantitatively the picture giving a minimum value 
for the threshold, in proximity to the exact synchronism. 
This minimum value of the instability threshold depends 
on linear damping in the following way: 
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n
1

*GM
GM µδ ≈      (6) 

 
so that it grows fast with the order of the instability region. 
The combination of this aspect, with the narrowing evident 
from Fig. 3, explains why only the first region (and 
sometimes the second) can be expected to play a relevant 
role in parametric rolling in actual seaways. 
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Fig. 3. Threshold boundaries of the first three 
instability zones for the linear undamped Mathieu 
equation. The diagram has been adapted to variables 
relevant to parametric rolling. 

 

Considering thus in particular the first instability region, 
one has the following expression for the curve separating 
stability and instability regions in the presence of linear 
damping: 
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with a minimum value 
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which is a well known result. 

2.2 (a) The experimental results 
 
The tests were conducted in the towing tank of Trieste 
University. Several series of tests were done, aimed at 
investigating the effect of wave steepness, wave speed, 
ratio λw/L. The stability characteristics in waves have been 
calculated with a standard code allowing fixed and free 
trim isocarenic transversal inclinations in the Froude-
Krylov hypothesis. The following values of the wave 
steepness were used for the first series λw/L =1: 

sw=1/30, 1/50, 1/100, 1/200, 1/300, 1/400. 

The second series was conducted with sw=1/50 and 
λw/L=0.75, 0.932, 1.0, 1.25. 

Finally, the third series was conducted at the same wave 
height, corresponding to the wave with sw=1/50 and 
λw/L=1, at the ratios λw/L=0.75, 1.0, 1.25. 

Due to basin limitations, most tests were conducted in 
head waves, but the 1/50 series was conducted in the full 
range included in the zone of instability. 

Prior to tests in waves, the roll damping as a function of 
speed was determined in calm water. In Fig. 4 the 
equivalent linear damping µeq is reported as a function of 
forward speed together with the adopted analytical fit. 
The experimental results have been compared in Fig. 5 and 
6 with the threshold for onset of parametric rolling in the 
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ω . As a general rule in the figures: 

 
- the square points represent cases where the 

parametric roll was present; 
- empty diamond points indicated absence of 

parametric rolling, i.e. roll decay was observed after 
perturbation of the upright position; 

- empty squares indicate “uncertain” cases, most likely 
belonging to the decay, but very close to the border 
(not always). 
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Fig. 4. Ship roll damping in calm water as a function 
of forward speed together with its analytical fit used 
in the calculations. 

 

The factor 
*GM

GM
p1

δ
=  has been computed both in the fix 

and in the free trim condition. 
It is interesting to observe that even in the mildest 
environmental condition (sw=1/400 – waves can hardly be 
seen in towing tank), the parametric rolling was present, 
provided the encounter frequency was in the appropriate 
range. 
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Fig. 5. Comparison between the experimental results 
and the analytical threshold curves obtained by Eq. 7 
with the damping as a function of forward speed 
reported in Fig. 4. The stability calculations to 
obtain the factor p1 were made with fixed trim. 
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Fig. 6. Comparison between the experimental results 
and the analytical threshold curves obtained by Eq. 7 
with the damping as a function of forward speed 
reported in Fig. 4. The stability calculations to 
obtain the factor p1 were made with free trim. 

 
As one can see from Fig. 5 and 6, the agreement in terms of 
threshold for onset of parametric rolling is quite good. This 
is especially evident from the case sw=1/50 which was done 
in the full range of ship speeds, including the following sea 
condition. The agreement with the fixed trim calculation is 
nevertheless better than the other as less points leading to 
sustained parametric rolling “escape” the instability region. 
This poses the question, often debated (see for example 
[12-15]), of which is the way to compute the parametric 
forcing due to the waves. In this case it appears that simple 
hydrostatic equilibrium is sufficient to give reliable results. 
Alternatively, the effects of the nonlinear restoring on the 
threshold for the onset of parametric rolling could be 
advocated [5]. 
 
2.2 (b) The effect of damping 
 

The parametric “forcing” term can also be seen as a 
reduction in the damping, so leading to the consideration of 
an “effective” damping. 
The solution of the linear Mathieu equation is indeed 
unstable if 0* >+− σµ  where σ is the characteristic 
exponent obtained by the application of the Floquet theory. 
Here unstable means diverging. On the contrary, the 
solution is converging to zero (i.e. the effect of a 
perturbation to the upright position is reduced to zero as 
time increases) if  0* <+− σµ . The intermediate condition 
corresponds to the borders of the instability regions of Fig. . 

When the representative point in the 
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to the border of the instability zone, the effective damping 
is very small and the decay of a perturbation is very slow. 
In Fig. 7, the decay of a perturbation in very small waves is 
compared with the decay in calm water at an advance speed 
close to that in waves. 
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Fig. 7. Roll decay in waves for sw=1/400 compared 
with the calm water decay. The point is very close to 
the border of the instability region (see Fig. 5). 

 
2.3 THE ROLL MOTION AMPLITUDE ABOVE 

THRESHOLD 
 
2.3 (a) The analytical solution 
 
A perturbation method (here the Van der Pol one) can be 
applied to the nonlinear Eq. 2 to obtain an approximate 
analytical solution. 
In the first instability zone, one has n=1 and 0e 2ωω ≈  , 
and the stationary solution can be guessed in the form: 
 

tcosBtsinA)t( +≈φ     (9) 
with A and B slowly varying amplitudes. Deriving, 
substituting in Eq.2  and using the auxiliary condition: 
 

0tsinBtcosA =+ &&     (10) 
 



 6

the following algebraic system of equations in the 
unknown amplitudes A and B is obtained: 
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The steady solution 22 BAC +=  can now be obtained 
by solving the system 11 with respect to A and B by 
posing 0BA == && .  

In the following, a Parameter Identification Technique 
(PIT), based on the regression of the analytical solution to 
the experimental data will be used to obtain an estimate of 
some relevant parameter, in particular the coefficients 
expressing the parametric forcing and the nonlinear term 
in the righting arm. To this end, the use of the system of 
algebraic equations obtained for steady A and B is not 
simply viable. We tried thus a simplified approach based 
on the use of an “average” value for the nonlinear term in 
the parametric excitation: 

22
1ave 3

p
pp φ+=     (12) 

 
in the generic iteration of the zero searching procedure 
used to obtain the roll motion amplitude C. In this way, the 
system of algebraic equations reduces to a single second 
degree one. 
Also the coupled mathematical model can be solved in 
similar way, resulting in a somewhat more complex 
system of algebraic equations for C. In this case, other 
perturbation methods may be more appropriate [4,5]. 
 
2.3 (b) The experimental results 
 
The results of the tests in terms of steady roll motion 
amplitude above threshold are reported in Figs. 8 to 11 for 
the different series. The series at constant sw and λw/L 
were fitted by means of the numerical solution of Eq. 11 
above with the assumption of Eq. 12. 
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Fig. 8. Steady roll motion amplitude of parametric 
rolling as a function of ship forward speed (given at 
model scale) at constant wave height. 
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Fig. 9. Steady roll motion amplitude of parametric 
rolling as a function of ship forward speed (given at 
model scale) at constant wave steepness. 

 
This gives two branches of the curve )v(functionC =  
originating at the two extreme forward speed values 
corresponding to the encounter frequencies defining the 
interval intersection of the threshold (Fig. 5,6) with the 
horizontal line drawn at the *GM/GMp1 δ=  value 
relevant to the investigated sw. The upper branch (blue in 
the figures) corresponds to the stable parametric sub-
resonant rolling , while the lower one corresponds to the 
unstable one (red in the figures).  
Again the fitting is quite good. It was obtained with the 
use of the PIT, i.e. the parameters α3 and p1 were 
estimated by means of the least square fitting of the 
experimental results. The estimated results for p1 are 
reported in Table. 2 together with the values obtained with 
fixed trim computations. 
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Fig. 10. Steady roll motion amplitude of parametric 
rolling as a function of ship forward speed (at model 
scale). The tests refer to λw/L =1 and sw=1/30. The 
experimental uncertainty is reported in standard 
way. The continuous curve represent the simulation 
obtained by assuming Eq. 12. 
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Fig. 11. Steady roll motion amplitude of parametric 
rolling as a function of ship forward speed (at model 
scale). The tests refer to λw/L =1 and sw=1/50. The 
experimental uncertainty is reported in standard 
way. The continuous curve represent the simulation 
obtained by assuming Eq. 12. 

 
The comparison is quite satisfactory and confirms that 
previously obtained analysing the threshold. On the 
contrary, the cubic term of righting arm is in qualitative 
agreement, i.e. the trend as a function of the wave 
steepness is correct, but the values “required” to fit 
reasonably the experiments are much greater in absolute 
value than the hydrostatic ones. This problem was 
encountered earlier [2]. Probably the “coupled” 
mathematical modelling would account for a greater 
excursion of the restoring curve as a whole. 
 

Table 2. Estimated and computed (hydrostatic) 
values of the righting arm to fit experimental results. 

 
sw 1/200 1/100 1/50 1/30 

α3 (PIT) -16.77 -17.38 -9.76 -7.23
p1 (PIT) 0.097 0.287 0.875 1.064

p1 
hydrostatic

 
0.224 

 
0.468 

 
0.854 

 
1.048

p2 
hydrostatic

0.224 0.468 0.854 1.048

 
2.3 (c) The role of damping and righting arm 

nonlinearities 
 
The exceedance of the threshold (both in terms of 
parametric forcing and encounter frequency) entails the 
onset of parametric rolling in the presence of any 
perturbation of the upright position. The linearity of the 
system does not allow to individuate any upper bound to 
the oscillation amplitude [4,16] which is expected to grow 
to divergence or system failure. Only the presence of 
nonlinear terms in the damping and particularly in the 
restoring can account for the practically observed reaching 
of a maximum steady amplitude in the parametric rolling 
(provided, of course, that the vanishing stability angle or 
some other non-return condition is not exceeded). The role 
of the two sources of nonlinearity is of course different. 
The damping provides extra energy dissipation capability, 
while the restoring leads the system out of synchronism by 
increasing the roll motion amplitude, as is particularly 
evident in the reported results. 
 
3. PARAMETRIC ROLLING IN IRREGULAR 

WAVES 
 
A research project was undertaken aimed to a better 
understanding of the threshold and roll motion amplitude 
above threshold in the presence of parametric rolling 
generated by a train of irregular waves in longitudinal 
directions. The research is in progress [17]. We just 
mention here some aspects which worth further attention: 
 
3.1 DOPPLER EFFECT 
 
As generally observed, the waves spectrum undergoes an 
“hardening” in following sea, whereas it flattens in head 
sea conditions. This factor is sometimes overlooked since 
the spectral bandwidth: 
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as a function of ship speed goes through a minimum value 
[18,19] at low speed in following waves, as shown in 
Table. 3 for a Bretschneider spectrum. 
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Table. 3. spectral bandwidth as a function of ship 
speed 

 
 Head sea  Following sea 
U*cos(ψ)  [kn] -20 -10 0 5 7 10 

m0 [m2] 0.0625 0.0625 0.0625 0.0625 0.06250.0625
m1 [m2/s] 0.133 0.097 0.061 0.043 0.037 0.029
m2 [m2/s2] 0.546 0.242 0.069 0.031 0.025 0.026
ωz [rad/s] 2.956 1.968 1.051 0.704 0.632 0.645

Tz [s] 2.126 3.193 5.980 8.922 9.935 9.742
ω  [rad/s] 2.128 1.552 0.976 0.688 0.592 0.464

sbw 0.964 0.779 0.399 0.219 0.376 0.966
 
Since the parametric rolling, like all resonance 
phenomena, is tied to the presence of wave grouping, i.e. 
to a train of waves with characteristics very similar, the 
effective wave groupiness as a function of bandwidth 
should be carefully investigated.  
 
3.2 THE MODELLING OF THE GM VARIATIONS
  
This is a very important point since the transfer function 
between wave spectrum and GM variations needs to be 
known for a range of ratios λw/L. We have tried to use the 
formulas proposed by Dunwoody [12], but the result, 
although qualitatively correct, is not completely satisfying. 
Of course, this is a problem more connected with the 
threshold exceeding than with the amplitude above 
threshold. In this last case, which is one of the goals of the 
ongoing research, also information concerning the 
nonlinear restoring are of great importance (§2.3c) to 
identify upper bounds and hence probability of exceedance 
above threshold (see also [19]).  
 
3.3 THE MODELLING OF THE THRESHOLD 
 
This problem was identified by several authors [20, 21, 
17]. Different types of stability requirements can be 
imposed in the case of stochastic parametric excitation: 
- stability of the mean and asymptotic stability of the 

mean; 
- stability of mean square and asymptotic stability of 

mean square; 
- almost sure asymptotic stability. 

 Of course, they lead to quite different estimates of the 
threshold. 
 
 
3.4 THE EFFECTIVE LINEAR DAMPING 
 
Starting from a linear differential equation with parametric 
forcing term described by a stochastic process h(t): 
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one can introduce an “effective” linear damping: 
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so that the instantaneous roll motion amplitude C(t) is 
expressed by: 
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     (17) 

 
The effective linear damping possesses a stochastic 
component 
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which is to be subtracted to the hydrodynamic damping in 
the same way as it was done in the case of parametric roll 
in a regular sea by subtracting the characteristic exponent 
σ (§ 2.2 b). This proves again to be a very “effective” 
concept. The parametric roll in a stochastic environment 
was simulated in time domain to clarify the local (in time) 
departure from stability along a realisation. The following 
idealised spectrum was employed: 
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as it allows simpler control of parameters, moments, 
bandwidth, etc., which are obtainable in analytical form. 
The time evolution of the roll motion amplitude (envelope) 
obtained with a GM fluctuation spectrum given by Eq. 19 
with following parameters values is reported in Fig. 12: 
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Fig. 12. Effect of the up-crossing of the 
“deterministic” threshold (Eq. 8) on the motion 
amplitude (envelope) highlighting the role of the 
slowly varying component of the effective damping 
(red line).  

 
For comparison, the time history of the GM fluctuation 
and of the random part of effective damping are also 
reported. It appears that the effective damping is rapidly 
fluctuating in a quite irregular way. If we turn our attention 
to the slowly varying component of µeff, obtained by 
means of a low pass filter from the time history of 
damping, we can observe that  only when the envelope 
amplitude of the GM fluctuation exceeds the deterministic 
threshold (Eq. 8), as for example at point B, the effective 
damping starts decreasing and at its zero down-crossing at 
time C the roll amplitude starts increasing. Viceversa at 
time D. In the time interval A-B, h(t) is very small. As a 
consequence the effective damping is high (close to the 
calm water value) and the perturbation to the upright 
position is rapidly quenched. It appears thus that Eq. 8 
plays an important role in the case of stochastic parametric 
excitation too. 
As regards the almost sure stability condition (in the 
large), this depends on the bandwidth of the process 
representing the GM fluctuations, which in turn is related 
to that of the wave spectrum and the forward speed of the 
ship. In the case of narrow banded h spectrum, the 
threshold for the variance of h(t) is 
approximately π/2 times that given by Eq. 8. 
 
4. CONCLUSIONS 
 
The problems connected with the threshold formulation for 
parametric rolling and its amplitude modelling above 
threshold have been discussed in detail on an experimental 
basis. It appears that the most serious problem in 
simulating experimental results in regular waves consists 
in the accurate modelling of the nonlinear restoring terms. 
Both head and following waves have been considered, also 

in view of the greater attention to head sea conditions 
called during IMO/SLF discussion on the revision of the 
Intact Stability Code.  
Passing to the case of parametric rolling in the presence of 
stochastic excitation, several problems have been 
identified as regards the mathematical modelling and the 
identification of an “appropriate” threshold. It is well 
known indeed that several different thresholds can be 
proposed in the case of irregular waves. The introduction 
of the so called “effective” damping was identified as a 
useful tool both for regular and irregular waves. It 
constitutes a bond between the “deterministic” threshold 
for parametric rolling and the local stochastic one. 
Finally, the nonlinear modelling of roll motion variance 
above threshold is at present not properly addressed (with 
some notable exception like [19]).  
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