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SUMMARY

This paper discusses a computational simulation for ship motions, including the effects of green-water-on-deck, and
analyzes the predicted rolling behavior of a 21-meter fishing vessel with various computational options. The simulation has
been performed by integrating water-on-deck flow into the LAMP (Large Amplitude Motion Program) nonlinear time-
domain ship motion and load prediction code. The principal water-on-deck flow model is a finite-volume solution of the
shallow water flow across the deck, which is described in detail. The fishing boat simulations are analyzed with the intent
of qualitatively evaluating the prediction of expected rolling behavior and the effects of water-on-deck.

1. INTRODUCTION

While computer simulations of water-on-deck and deck-
in-water problems can be viewed as a principal tool in
both research and everyday design work, such simulations
pose a challenge in interpreting results and their validity.
Large ship motion with water-on-deck is a highly
nonlinear phenomenon, which is prone to “strange”
behavior. Therefore, a computational result that is unusual
or unexpected may not necessarily be wrong. Conversely,
a fit within an expected numerical range does not
guarantee that the result is correct. This makes physical
adequacy of simulation a central issue, even as
requirements for computational effectiveness are being
eased constantly due to increasing numerical power of
hardware.

What could be considered a proper validation?
Traditionally, since the time of Galileo, a hypothesis must
be tested against experiments that are carried out in a
manner aimed at rejecting the hypothesis; if the
experiments fail, the hypothesis becomes a theory.
However, computer simulation is − by its nature − in
between experiment and theory. Even though the
governing equations themselves might be beyond any
doubt, the numerical realization of those equations is
always approximate, which is a source for a number of
inadequacies ranging from rounding errors to numerical
instabilities caused, for example, by small differences.
Simple theoretical solutions could be considered as a
validation of a numerical scheme. Then, a software’s
ability to reproduce known behavior can be considered as
the most basic qualitative validation. This kind of
validation is the focus of this paper.

What kind of behavior should be reproduced?
The dynamic system describing a ship with water-on-deck
is quite complicated. First, the water was delivered on
deck because the deck edge was submerged. Since we are
interested in a large quantity of water (enough to change
the vessel’s behavior and create a capsizing threat), we
probably have to consider a large portion of deck to be
submerged in some point. Secondly, following

Grochowalski (1989, 1993) we must consider two
situations: “deck-in-water” and “water-on-deck”. These
situations are different in the way the water creates force
on the ship. In the deck-in-water case, hydrodynamic
pressures create the force on a flat portion of the deck, a
force that is especially strong when the ship moves against
the wave. In the water-on-deck case, a heeling moment is
created by shifting the mass of the green-water-on-deck
including additional forces caused by in- and outflow of
the water and, eventually, by dynamical pressures on deck
structures caused by wave flow (Adee and Caglayan,
1982; Amagai et al., 1994; Grochowalski et al., 1998).
Mathematical formulation of the difference between these
situations is yet another challenge to be met.

Even if one artificially excludes the deck-in-water
situations and the water’s in- and outflow in the water-on-
deck situations, the phenomenon is still too complicated
for theoretical solution. It is possible, however, to estimate
motion stability at medium range of ship roll, if no
bulwark is present (Garkavy, 1985).

Only if behavior of water-on-deck is considered
as purely static (this allows consideration of a ship with
negative initial GM) the complete picture of motion be
revealed with methods of contemporary nonlinear
dynamics, including Melnikov analysis (Falzarano et al.,
1992, Kan and Taguchi, 1992, 1993). Direct comparison
of simulation results with the above theoretical models
meets certain difficulties concerning calculation of
invariant manifolds for the dynamical system that are not
completely described with a system of ordinary differential
equations. These difficulties might be overcome but this is
beyond this paper’s scope.

This paper focuses on the simplest qualitative
validation for simulating ship motion with green-water and
deck submergence

2. COMPUTATIONAL SYSTEM OVERVIEW

The computational system used in the present study is the
result of a recent effort to develop a sophisticated green-
water-on-deck model that could be integrated directly into
a time-domain ship motion calculation, thus allowing
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green-water effects to be included in the calculation of
nonlinear ship motions and loads. In order to attain this, an
approach was selected in which the ship motions and
green-water-on-deck calculations run concurrently in the
time domain. In effect, this approach subdivides the
computational domain into an “outer” solution of the ship-
wave interaction problem and an “inner” solution of the
green-water-on-deck problem, as illustrated in Figure 1.

Figure 1. Decomposition of the Computation Domain

The ship motions code in the present effort is the
Large Amplitude Motions Program (LAMP) System. At
each time step of the LAMP calculation, the ship motion
and wave definition are used to compute the relative
motion at the deck edge (often called the deck edge
exceedance), the deck tilt, and the deck acceleration,
which are then passed to the green-water-on-deck
calculation. The green-water calculation is subsequently
updated, after which the green-water pressure and forces
are passed back to the ship motions calculation to be used
in solving the equations of motions and computing
sectional loads. The structure of this computational
approach is illustrated in Figure 2.

Figure 2. Structure of the LAMP System with Green-
Water-On-Deck

The integration of the green-water calculation in
the LAMP System has been done in a  “modular” fashion

so that different “levels” of calculations are available. At
the present time, three types of green-water calculations
are implemented: the direction calculation of deck pressure
from hydrostatics and incident wave (Froude-Krylov)
pressure, a semi-empirical approach in which the green-
water elevations are computed directly from the edge
exceedance, and a solution of the shallow-water flow
across the deck. The later model constitutes the principal
focus of the present investigation. An additional
computational approach, which eliminates the shallow-
water assumption and solves the flow over the deck using
a full 3-D finite volume method, is currently under
development.

3. THE LAMP SYSTEM

The LAMP System is a time-domain simulation model
specifically developed for computing the motions and
loads of a ship operating in extreme sea conditions. The
development of the LAMP System began with a 1988
DARPA project for advanced nonlinear ship motion
simulation, and has continued under the sponsorship of the
U.S. Navy, U. S. Coast Guard, the American Bureau of
Shipping (ABS), and SAIC’s IR&D program.

LAMP uses a time stepping approach in which all
of the forces and moments acting on the ship, including
those due to the wave-body interaction, appendages,
control systems, and green-water, are computed at each
time step and the 6-DOF equations of motions are
integrated in the time-domain using a 4th-order Runge-
Kutta algorithm. In addition to motions, LAMP also
computes main girder loads using a rigid or elastic beam
model and includes an interface for developing Finite-
Element load data sets from the 3-D pressure distribution
(Weems, et al., 1998).

With its general nonlinear time-domain approach
and solution of the 3-D flow field, LAMP is well suited for
incorporating a nonlinear green-water-on-deck calculation
model.

3.1 WAVE-BODY HYDRODYNAMICS

The central part of the LAMP System is the 3-D solution
of wave-body interaction problem in the time-domain (Lin
and Yue, 1990, 1993). A 3-D disturbance velocity
potential is computed by solving an initial boundary value
problem using a potential flow “panel” method. A
combined body boundary condition is imposed which
incorporates the effects of forward speed, ship motion
(radiation), and the scattering of the incident wave
(diffraction). The potential is computed using a hybrid
singularity model that uses both transient Green functions
and Rankine sources (Lin et al., 1999). Once the velocity
potential is computed, Bernoulli’s equation can then be
used to compute the hull pressure distribution including
the second-order velocity terms.

The disturbance velocity potential can be solved
over either the mean wetted surface (the “body linear”
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solution) or over the instantaneously wetted portion of the
hull surface beneath the incident wave (the “body
nonlinear” approach). In either case, it is assumed that
both the radiation and diffraction waves are small
compared to the incident wave so that the free-surface
boundary conditions can be linearized with respect to the
incident-wave surface. Similarly, the incident wave
forcing (Froude-Krylov) and hydrostatic restoring force
can also be computed either on the mean wetted surface or
on the wetted hull up to the incident wave.

The combinations of the body linear and body
nonlinear solutions of the perturbation potential and the
hydrostatic/Froude-Krylov forces provide multiple
“levels” of solution of the ship-wave interaction problem.
For most problems, the most useful of these is the
“approximate body-linear” solution, which combines the
body-linear solution of the disturbance potential with
body-nonlinear hydrostatic-restoring and Froude-Krylov
wave forces. This latter approach captures the significant
nonlinear effects of most ship-wave problems at a fraction
of the computation effort of the general body-nonlinear
formulation.

3.2 NON-PRESSURE FORCES

In additional to the calculation of the hydrodynamic
pressure, LAMP includes models for non-pressure forces
including viscous roll damping, propeller thrust, bilge
keels, rudder and anti-rolling fins, mooring cables, and
other systems. For oblique-sea cases, a PID (Proportional,
Integral, and Derivative) course-keeping rudder control
algorithm and a rudder servo model are implemented.
Because of the time-domain approach, these non-pressure
force models can include arbitrary nonlinear dependency
on the motions, etc. Adjustable viscous roll-damping
models are available that allow the roll damping to be
“tuned” to match experimental values by simulating roll
decay tests.

The non-pressure force model has also been used
to integrate ship motions with crane pendulation, anti-
rolling tank systems, and cargo sloshing models of various
kinds. The cargo sloshing models, which are currently
very simple, have been used to provide a simple evaluation
of loss of stability for trapped water-on-deck.

3.3 GREEN-WATER INTERFACE

At each time step, LAMP uses the ship rigid body motion,
the incident wave definition, and the hull pressure
distribution to compute the relative motion of the edge of
the deck to the wave surface. The hull pressure is used to
predict the disturbance wave or “pile-up” of the free
surface due to the presence of the ship. This relative wave
height (or deck exceedance) and its relative flow velocity
are passed to the green-water-on-deck calculation module
in order to define suitable inflow and outflow boundary
conditions. The ship’s rigid body motion, velocity, and
acceleration vectors are also passed in order to define the

tilt of the deck and inertial terms in the green-water-on-
deck equations.

Based on these data, the green-water-on-deck
calculation is then advanced to the current LAMP time
calculation. The deck pressure and edge forces due to
green-water are passed back to LAMP where they are
integrated and added to the right hand side of the equations
of motion as well as being used in the sectional-load
calculations.

3.4 APPLICATIONS AND VALIDATION

The LAMP System has been applied to a variety of
conventional and unconventional ships and marine
structures including naval combatants, tankers, bulk
carriers, container ships, wave-piercing “tumblehome”
ships, high-speed displacement multi-hulls, buoys, and the
Navy’s Mobile Offshore Base (MOB).

A number of LAMP validation studies have been
performed, including an extensive series of calculation for
the U.S. Navy CG-47 class cruiser in storm sea conditions
(e.g. Weems, et al., 1998). These studies have been
instrumental in validation the ability of both the “body-
nonlinear” and “approximate body-nonlinear” approaches
to predict the nonlinear behavior of bending moments for
flared-bow ships in extreme sea conditions.

Another important validation study was the
analysis of parametric rolling for a post-panamax
containership in large head and following seas (France, et
al., 2002). This study, which included computations using
LAMP and other systems as well as extensive model tests,
demonstrated that the LAMP System could capture both
the incidence and magnitude of large roll motions excited
by the nonlinear coupling between pitch and roll motions.

4. GREEN-WATER CALCULATION

In the LAMP System, green-water effects are modeled
using a concurrent, time domain calculation of the water-
on-deck. The implementation is modular, with four
different water-on-deck calculation options implemented
or under development:
1. Hydrostatic and Froude-Krylov pressure: Deck

pressure is computed from the submergence of each
deck element and the linear incident wave pressure
(∂�/∂t). This is a straightforward modeling of the
deck as a “body-nonlinear” hydrostatic/Froude-Krylov
surface and represents the basic deck-in-water
calculation.

2.  Semi-empirical model: Water-on-deck is calculated
directly from deck edge exceedance using an
empirical expression derived from Zhou et al. (1999).
The resulting deck pressure, including the effects of
the deck motion, can then be evaluated following the
approach proposed by Buchner (1995). This model is
intended to provide a quick estimate of the effect of
foredeck green-water on ship motions and main girder
loads.
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3. Shallow water flow calculation: Computes the
longitudinal and transverse flow over the deck with
the assumption of shallow water using a finite-volume
technique. This is the principal green-water
calculation used in the present study and is described
in detail below.

4. Fully 3-D flow calculation: Computes the flow over
the deck, including vertical gradients, using a 3-D
volume grid and a finite-volume technique. This is a
new technique that is not yet working but illustrates a
likely future path for green-water calculation methods.

4.1 SHALLOW WATER FLOW CALCULATION

The most sophisticated of LAMP’s current green-water-
on-deck calculation methods is the one based on the
solution of the shallow water flow equations using a novel
finite volume strategy. In this method, the equations of
conservation of mass and momentum are solved in the
time domain, shallow-water assumptions are made, and
viscous effects are ignored except for a relatively simple
deck friction term. The shallow water assumptions are that
the fluid acceleration normal to the deck can be ignored
while the tangential fluid velocity and pressure are
assumed to be constant across the depth of water-on-deck
(Stoker 1957). These assumptions reduce the 3-D fluid
domain to a 2-D computational domain. This method can
handle a variety of boundary and initial conditions, and it
is capable of supporting arbitrary motions and general
geometries of a ship deck, including partial height walls
(e.g. bulwarks), “infinite” walls (e.g. deckhouses), and
stepped or raised section (e.g. hatch covers). This approach
has been validated with available experimental data and
has been successfully integrated with the LAMP System
(Liut, et al., 2002).

For this approach to be useful as an integrated
part of the LAMP simulation, the green-water-on-deck
calculation is required to be reasonably fast, robust, and
capable of calculating the flow on a deck that is moving
with large-amplitude six-degrees-of-freedom motions and
exchanging water with the environment. Because of these
requirements, a considerable portion of the effort in
developing and implementing the numerical method has
been spent in ensuring a stable and reasonable solution
even when the assumptions of shallow water flow are
stretched to their limits.

4.1 (a) Conservation Of Mass

Given a control volume CV and the corresponding control
surface CS enveloping it, Reynold’s Transport Theorem
can be used to express the principle of conservation of
mass as

( ) 0=•ρ+ρ
∂
∂= ∫∫

CS

r

CV

dSdVol
tdt

dm
nv (1)

where S is the surface of CS, Vol represents the volume of
CV, ρ is the fluid density, t is time, m is the mass of fluid

inside CV, vr is the flow velocity on CS, and n is the
normal-to-S unit vector given point wise on
S [ ].),,( zyxnn =

The first step to solving the shallow-water
problem with the present strategy is to divide the
computational domain into a set of vertical hexahedral
elements (close-volume elements with quadrilateral faces),
which are contiguously connected, as shown in Figure 3.a.

Figure 3. Finite volume element e with adjacent
elements qs. The subscript s characterizes each of the
four sides of element e. The corresponding
numbering convention for s is given in part b, where
the characteristic area Ce for a generic element e is
shown, along with each side ds.

As seen in this figure, each element e has a fluid
elevation he, measured from the geometric center of the
base of the corresponding hexahedral element to its top.
Also, for each element, a characteristic area Ce is defined,
which is the projection of the base area of element e onto a
surface normal to the z axis, which contains the geometric
center of the hexahedral’s base. The vertical axis z is set to
be parallel to the acceleration of gravity. The four lateral
faces of each element are defined by the surfaces As. Note
that these faces remain vertical in the global system as the
deck tilts. As shown in Figure 3.a, the subscript qs denotes
the adjacent element q to side s of a given element e. If an
element had a triangular base, one of its four side surfaces
As would be collapsed to a line, a situation that is perfectly
acceptable with the present method. The normal vectors to
the lateral areas, n, are always normal to the gravity
vector. The flow velocity measured on each lateral surface

 

i 

 j 

Ce d1 d3 

d2 

d4 

(a)

(b)



5

As is represented by the vectors vr, which are always
parallel to the undisturbed water level. If the principle
stated in equation (1) is applied to a generic element e,
conservation of mass can be expressed as:

[ ] 0
4

1

=











•+

∂
∂ ∑

= es
ssre AhC

t s
nvρρ (2)

where 
sr

v  is the average normal velocity to each lateral

surface As of element e. Each element has a characteristic

flow velocity ve with horizontal components 
exv  and 

eyv .

As stated above, the platform for the shallow-
water occurrence is allowed to move with six degrees of
freedom following the deck of a ship. Thus, for each
element, the base horizontal surface Ce will typically be a
function of time. Regarding the differentials as finite
differences and taking into account the incompressibility
condition, equation (2) can then be written as:

( ) ( )
4

1

; ; 0
x y

e

r r x y s sss
s e

C h

t v v n n h d
=

 ∆ + 
 ∆ • ≅  
∑

(3)

where the bars account for average values between time
step k and k−1, and where ds are the four sides s
corresponding to the horizontal surface Ce (see Figure 3.b).
The subscripts x and y indicate vector components parallel
to Ce in the corresponding x and y directions (see Figure
3.a). Expanding the finite differences, equation (3) can be
written as:

( )

( ) ( )

1 1

4 1 1 1 1

1

; ;
x y

k k k

e

k k k k
r r x y s sss

s e

C h h

t v v n n h d

+ +

+ + + +

=

 − + 
 ∆ •  
∑ (4)

where the superscript k is the time step counter.
Rearranging terms and after some numerical treatment,
equation (4) can be written in the compact form

j
e
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k

q
j

eq
k
e

j
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11
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jj
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where

( ) ( )
sss

eeyxeyxee dnnvvQ ;; •= (9)

( ) ( )
ssss

eeyxqyxeq dnnvvQ ;; •= (10)

sss eqeqeeq η∆η∆γ=σ 2
3

2
(11)

The variable γe is the vertical acceleration of
element e (which is described in the next section), whereas
∆ηqs is the difference in fluid level between element e and
element qs. The superscript j is an iterative counter; an
iterative process is needed to solve the algebraic equations
defined by (5) since the coefficients defined by (7) and (8)
are a function of the elevations h and the other two sets of
unknowns given by the vectors v.

4.1 (b) Conservation Of Momentum

Given a control volume CV, Reynold’s Transport
Theorem applied to the conservation of momentum
principle yields the following formulation:

( )

( ) ∫∫

∫∫
ρ−−=

•ρ+ρ
∂
∂=

CVCS

CS

r

CV

dVoldSp

dSdVol
tdt

md

bn

nvvv
v)(

(12)

where b is a horizontal acceleration vector (described
below), and p is pressure. If the same control volume
defined for the conservation of mass formulation is
considered for each element, and taking into account the
incompressibility assumption, equation (12) can be written
as:

[ ] ( )

( ) ∫∫

∑

−−

=











•+

∂
∂

=

ee

s

CVCS

es
ssrs

dVoldSz

AhC
t

bn

nvvv

γ

4

1 (13)

where γ is the vertical acceleration given by
γ zag += (14)

Thus the vertical acceleration γ includes the acceleration of
gravity g and the vertical acceleration az induced by the
vertical motion of the platform considered. The body
accelerations represented by b are the horizontal
accelerations (normal to the gravity vector) induced by the
motion of the platform. Solving the integrals in equation
(13), they yield

( )

e

s
s

ss

es
ssrs

hCdh

A

t

h
C

t

C
h

t
hC

i












+−

=





•+




∂
∂+

∂
∂+

∂
∂

∑

∑

=

=

bn

nvv

vv
v

4

1

2

4

1

2

γ

(15)

Regarding the differentials as finite differences, equation
(15) can be written as:
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2

4

1
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(16)

where, as before, bars account for average values between
time step k and k−1. Expanding the finite differences, this
expression can take the following compact form:
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(20)

( )
ssqssses ereqerees dhdhD nvnv •+•=

2

1
(21)

The term jk
eP is the force term due to the hydrostatic

pressure, which is given by

( ) 1
4

1

1121 111

4

1 +

=

+++ −−− ∑∆γ= jjj

s

jj k
s

s

k
s

k
eq

k
e

k
e dht nP (22)

As in the case of the equations of mass, the
system of equations defined by (17) is solved iteratively
for v since the coefficients given by equations (18)-(22)
are a function of v and h. In the overall scheme, at each
iteration j, first the fluid elevations eh  are solved, next the

x components of the vectors ve, followed by the y
components of the same vectors. This process is repeated,
within the same time step, until convergence is achieved.

4.1 (c) Minimum Time Step

To attain stability in solving the conservation of
momentum equations, the main diagonal of the
corresponding set of algebraic equations must be
predominant at all times. For the formulation proposed in
this paper, the following conservative criterion was
adopted:

seqee RR Max> (23)

If the term ∆Ce in equation (18) is neglected, the previous
criterion can be expressed as

( )
( )[ ]

esss
s

k
e

k
ee

k
ee

hdht

hhChC

max

11

2Max γ∆

>−+ ++

(24)

where γmax is the maximum value of the vertical
acceleration (which includes the acceleration of gravity),

and where shmax2 γ  is an over-conservative estimate of

the maximum velocity that could flow between two
adjacent elements. Approximating Ce as 

e e sC d d= , such

as,

( ) ( )[ ]4231 ,max,,maxmin ddddde = (25)

where d1, d2, d3, d4 are the sides of Ce as defined in Figure
3.b, then equation (24) can be written as:

( )
2/3

maxmax

1

2 h

d
hht e

e
k
e

γ
∆−<∆ +

(26)

where .1 k
e

k
ee hhh −=∆ +  The fluid elevation  hmax  is the

maximum value of fluid elevation for the shallow-water
assumptions to hold. A maximum value of ∆he can be
estimated using the conservation of mass equation (see
equation (3)) as

( )maxMax 2e e s s s
s e

C h t h d hγ ∆ < ∆   (27)

using similar assumptions as those for equation (24). If Ce

is defined as ,see ddC =  and using the concept of hmax,

inequality (27) can be written as

e
e d

h
th

2/3
maxmax2 γ

∆<∆ (28)

Replacing inequality (28) in (26), the latter yields

2/3
maxmax

1

22 h

d
ht ek

e
γ

+<∆ (29)

Evidently, if he can take any value between zero and hmax,
the only stable solution would be the trivial solution in
which ∆t = 0. Therefore, to render the calculation possible
while at the same time stable, a minimum value of fluid
level hmin must be defined such that when the fluid
elevation of an element e drops below this value, that
element should be considered dry. This minimum value
will determine both the speed and the precision of the
calculation. Equation (29) can be rewritten in terms of hmin

as:

2/3
maxmax

min
22 h

d
ht e

γ
<∆ (30)

It remains to be determined what would constitute
a good estimate for hmax. To this end, a suitable estimate
for de must first be found. If the computational grid has
elements such that their individual Ce areas are
comparable, the ratio NLd e /≅  will be chosen as an
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estimate for the smallest value of de (which will determine
the maximum time step to be used). The ratio NL /  is
computed as:











=

j

j

i

i

ji
e N

L

N

L
d ,Min

,
(31)

where Li denotes lengths taken along the grid i directions,
Lj designates lengths measured along the corresponding j
directions (see Figure 3), and where Ni is the i-wise grid
dimension, whereas Nj is the j-wise grid dimension.

If hmax were arbitrarily small, ∆t could take
arbitrarily large values. But it is desirable that hmax be
allowed to take the largest possible values to extend as
much as possible the stable range for the computations of
he. To this end, it is taken as a criterion that hmax be an
order of magnitude larger than de. This criterion was

chosen to be ,// 2/1
max NLhd e ≅  which ensures that de is

an order of magnitude smaller than hmax, whereas hmax is an
order of magnitude smaller than L. This can be expressed
as

L
N

Lh
1

max == ε (32)

L
N

Lde
12 == ε (33)

where

2/1

1

N
=ε (34)

Replacing equations (32) and (33) into inequality (30), the
latter yields

max

4/1
min

22 γ
<∆

−

L

Nh
t (35)

which sets the maximum value of ∆t that can be used to
ensure a stable solution. The conditions required for this
criterion can be summarized as:

1) The individual area of each element of the
computational grid must be of the same order of
magnitude.

2) The maximum fluid elevation NLh /max =  should

never be exceeded.

It can also be proven that the stability condition
of inequality (35) deduced for the conservation-of-
momentum is sufficient to satisfy the stability of the
conservation-of-mass equations as well.

4.1 (d) Boundary Conditions

At the edges of the deck, boundary conditions are applied
by computing the volume flow through the side of the
elements on the edge of the computational domain. This
volume flow is computed from

a) depth of the green-water on the element, eh

b) green-water velocity normal to edge, eu

c) height of the “external” wave relative to the deck
edge (edge exceedance) , wh

d) normal component of velocity of “external” wave
relative to deck, 

wu

e) bulwark height, bh (if any)

f) length of the element edge, l
For edges where both the green-water depth and the edge
exceedance are below the bulwark height, the volume flow
through the side will be zero. For cases without a bulwark
or where either the green-water height or the edge
exceedance is greater than the bulwark height, the edge
velocity is computed as

2

3

max( ,0)

max( ,0)

2

e e w w b

e e b

h A u l h h

u l h h

g h l h

∆ ⋅ = ⋅ ⋅ −
− ⋅ ⋅ −

+ ∆ ⋅ ⋅∆
(36)

Here, h∆ is the signed effective height difference between
the edge exceedance and green-water height, corrected for
the presence of the bulwark:

max( , ) max( , )w b e bh h h h h∆ = − (37)
For most calculations involving bulwarks, it is

desirable to model the holes in the bulwark, sometimes
called “freeing ports,” which allow trapped water-on-deck
to escape. At the present time, the method does not have a
“perforated bulwark” model, so a “drain” term is specified
on the elements adjacent to bulwarks, which removes
water from the edge elements at a rate proportional to the
area of the freeing ports:

2e e fp eh A A gh∆ ⋅ = (38)

This drain model does not consider the effect of the
“external” water heights or velocity, but does provide a
reasonable simulation of the freeing ports until a more
suitable model can be implemented.

4.2 TESTING AND VALIDATION

In order to test and validate the numerical solution of the
shallow water calculation, computational studies have
been made for several configurations for which detailed
theoretical and experimental data are available. One such
study examined the “dam-breaking” problem, which
examined evolution of the level of water behind a dam
after the dam is suddenly removed. A second study
examined the outflow from a box whose end is suddenly
removed. Both studies show good agreement between the
present method and published data (Liut, et al., 2002).

In order to test the implementation of the green-
water calculation in the LAMP System, a series of
calculations were made for the CG-47 cruiser, a U.S.
Coast Guard Cutter, and a large modern container ship.
Figure 4 shows a snapshot for the simulation of the
container ship in very large oblique waves, with the
predicted green-water elevations drawn in blue. These
calculations have provided a qualitative validation of the
system but have stopped short of a full quantitative



8

validation due to the lack of detailed experimental green-
water-on-deck data. However, some level of qualitative
validation can be gleaned by comparing the result of the
different green-water calculations to each other and to the
statistics from which the semi-empirical model was
derived. The qualitative validation continues with the
fishing boat study described below.

Figure 4. Predicted Green-water for Container Ship in
Severe Oblique Seas

5. FISHING BOAT CALCULATIONS

5.1 CONFIGURATION

The fishing vessel analyzed in the present study is the 21-
meter stern dragger Italian Gold, which sank in heavy seas
off Massachusetts in 1994. All calculations were made at a
heavily loaded condition with a displacement of 194 long
tons and the center of gravity 0.08 meters above the mean
waterline. The resulting transverse metacentric height
(GMt) is 0.73 feet. The basic geometry model used in the
hydrodynamic and hydrostatic calculations is shown in
Figure 5.

Figure 5. Fishing Boat Geometry

In the simulations, the skeg and rudder were
modeled using “non-pressure” force models, so their effect
was included in the solution of the equations of motions
but not in the calculation of the wave-body interaction
potential. Green-water-on-deck was calculated over the
after deck, with inflow/outflow allowed over both sides
and the stern of the ship.

All of the calculations in the present study were
performed using LAMP’s “approximate body-nonlinear”
hydrodynamics model, in which the disturbance potential

is computed over the mean wetted hull surface while the
hydrostatic restoring and Froude-Krylov forces were
computed of the instantaneously wetted portion of the hull
beneath the incident wave.

5.2 ROLL DECAY STUDY

The first and, to this point, most extensive portion of the
study has involved a series of roll decay calculations using
different computational models and options. For clarity,
these calculations were made in calm water at zero speed
with the ship free only to roll. The initial roll angle was 30
degrees, at which the deck edge and bulwark are
reasonably deeply submerged. For the case involving the
shallow water green-water calculation, the deck elevations
were initialized with stationary water-on-deck up to the
calm waterplane Z=0.

An initial calculation was made for the boat with
no calculation of any kind on the afterdeck. A time history
of the roll angle, in degrees, is shown in red in Figure 6.
The blue “square-tooth” at the bottom of the upper graph
indicates the relative motion of the “minimum freeboard
point” of the deck edge – a high value indicates that the
deck edge is submerged while a low value indicates that it
is above the wave surface. This point, which is located just
aft of the deckhouse, submerges at about 10° roll angle in
calm water. To some extent, this indicates the beginning of
the transition from “water-on-deck” to “deck-in-water.”

Figure 6. Roll Decay Angle and Deck Edge Submergence
without Effect of Water on Deck

The initial roll period is 5.17 seconds and
increases slightly to 5.47 seconds as the roll angle
decreases. This change in roll period is due primarily to
the change in hydrostatic restoring moment of the “body-
nonlinear” formulation.

A second calculation computed water-on-deck
pressure from hydrostatics, which corresponds to green-
water calculation option 1 in Section 4 above. The results
for this calculation are shown in Figure 7. In addition to
the roll angle and deck edge submergence shown in the
bottom graph, the top graph shows a red line indicating the
volume of water-on-deck in m3 and a blue line shows the
resulting heeling moment in Newton-meters. Since the
model contains no “lag” of the water entering or leaving
the deck, the volume of water and the heeling moment are
exactly in phase with the roll angle. In other words, only

0 20 40 t, s
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20
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20
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the “deck-in-water” situation is modeled. The initial roll
period increases to 5.96 seconds, an effect caused by the
water-on-deck heeling moment, which in this case
effectively decreases the restoring moment when the deck
is submerged. As the roll angle decreases, the roll period
decreases to 5.47 seconds, matching the period from the
previous calculation. A small but noticable decrease in the
roll damping can be observed over the early portion of the
run, where the longer roll period has decreased the roll
velocity and reduced the damping due to skin friction and
appendages.

Figure 7. Roll Decay Results Including Hydrostatic Forces
on Deck: Water-on-deck Volume (VGW, top, red) and Roll
Moment (MGW, top, blue), Roll Angle (φ, bottom, red), and

Deck Edge Submergence (bottom, blue)

Calculations were also made using the semi-
empirical green-water-on-deck model described as option
2 in Section 4. Since the water-on-deck elevation is also
exactly in phase with the deck edge motion, the results,
which are not shown here, are very similar to the
hydrostatic deck pressure results, although the empirical
“correction” factor slightly reduces the water-on-deck
volume and heeling moment.

The next calculation uses the finite-volume
solution of the shallow water flow over the deck (option 3
above) with a bare deck edge (i.e. no bulwark). The
volume of water-on-deck starts out fairly large (as noted
above, the finite-volume model is initially “full” to mean
Z=0) and generally decreases as the water flows off the
deck, although there are small periods of inflow during
subsequent deck edge submergences. The initial roll
period is similar to the hydrostatic pressure case, which is
reasonable as the water-on-deck heeling moment is
similar, while subsequent roll periods match both of the

previous calculations at similar roll angles. Influence of
water-on-deck and deck-in-water is realized mainly in a
significant increase of roll damping.

Figure 8. Roll Decay Results Including Finite-Volume
Water-on-deck Effect Without Bulwarks

Since the problem is otherwise nearly identical to
that of the previous calculation, the damping influence
must be credited to the water-on-deck. The most likely
explanation is that the “lag” of the water flowing off the
deck or to the other side of the boat when the boat rights
itself results in a significant volume of water on the
“rising” side of the deck, where the resulting deck pressure
produces a significant moment in phase with but opposing
the roll velocity. Evidence for this interpretation is offered
in Figure 9, which shows a snapshot of the boat, which
was initially healed to starboard, with the computed water-
on-deck surface as it rolls through 0° heel in the first cycle
of the calculation. The extensive use of this type of visual
simulation of the ship motion and water-on-deck has
proved invaluable in both “debugging” the integrated
green-water calculation and interpreting the results.

If confirmed, this result could offer an alternate
source for the damping attributed by some sources to
vortex shedding from deck edge or bulwark. In order to
confirm this result, however, further investigation is
clearly required, in particular relating to validation of the
shallow-water flow model for the moving deck problem
and an evaluation of the effect of the selected numerical
parameters (especially grid size, time step, and minimum
elevation) on the results.
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Figure 9. Computed Water-on-deck Surface for Boat as it
Rolls Though 0 Heel

The next calculation, whose results are shown in
Figure 10, introduces a solid (no freeing ports) bulwark
with height 0.853 m (2.8 ft) to the finite-volume
calculation. The bulwark, which traps the water-on-deck
and raises the angle at which water can enter the deck in
calm water to over 20 degrees, changes the whole picture
of motions. Damping is such that the second peak of roll
angle is too small to immerse the bulwark top or to allow
significant inflow. The amount of green-water stays
constant and the ship quickly assumes a static heel angle
of about 7 degrees.

Figure 10. Roll Decay Results Including Finite-Volume
Water-on-Deck Calculation with 0.853 m Bulwarks

Decreasing the height of the bulwark (to 0.43 m =
1.4 ft) results in few qualitative changes to the behavior in
comparison with the full-size bulwark. The volume of
water-on-deck decreases slightly during the first semi-
period of oscillation as water is allowed to flow out over
the bulwark. As a result, equilibrium is reached at a

smaller static angle in comparison with the previous case.
Roll damping also seems to be slightly less.

Figure 11. Roll Decay Results Including Finite-Volume
Water-on-Deck Calculation with 0.43 m Bulwarks

5.2 Regular Wave Calculation

The second portion of the fishing boat study involved
calculations for the boat at zero speed in regular (single
frequency) beam waves. As in the roll decay test, the boat
was free only to roll. While not exactly a realistic
situation, it simplifies the comparison of the different
calculations and reduces the risk of capsize, especially
during the initial transient period. The wave height was
3.05 m (10 ft) with the period of 6.28 s, which makes the
wave forcing close to the roll resonance regime.  We wish
to consider only the steady state rolling in the present
discussion, so the results shown in Figures 12-15 are
plotted beginning 520 seconds into the simulations. The
initial transient behavior, which is both interesting and
very important, is simply beyond the present scope of the
work.

Figure 12. Regular Wave Roll without Effect of Water on
Deck
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Figures 12 shows the results of the regular wave
calculation for the boat with no deck model at all. The
response has quite large amplitudes, which constitutes its
nonlinear character. As for the roll decay results, the blue
“square-tooth” indicates the submergence of the deck’s,
minimum point, which now is a function of the roll angle
and the incident wave elevation.

Figure 13. Regular Wave Results Including Hydrostatic
Forces on Deck: Water-on-deck (VGW, top, red) and Roll

Moment (MGW, top, blue), Roll Angle (φ, bottom, red), and
Deck Edge Submergence (bottom, blue)

Figure 14. Regular Wave Results Including Finite-Volume
Water-on-deck Calculation but no Bulwark

Figure 13 shows the results of the regular wave
calculation with the deck pressure calculated as the
hydrostatic and linear incident wave (Froude-Krylov)
pressure only. The response is very regular and primarily
periodic at the forcing frequency.  An increase in roll
amplitude, attributed mostly to the decrease in restoring
moment and increase in wave forcing when the deck is
submerged, leads to an increasing amount of time “deck-in
water”

The next regular wave calculation used the finite-
volume calculation of the shallow water flow over the
deck with bare deck edges (no bulwark). The volume of
water-on-deck, plotted in red on the top graph, changes by
~80% over the wave cycle. The roll response is smaller
than the previous calculation, likely due to the water-on-
deck damping seen in the roll decay study, and shows a
bias of about 5° toward the “up-wave” direction. A weak
subharmonic response can be observed.

Figure 15. Regular Wave Results Including Finite-Volume
Water-on-deck Calculation With 0.853 m Bulwarks

Figure 15 shows the regular wave results with a
0.843 m bulwark added to the finite-volume calculation.
The maximum volume of water-on-deck is just a bit higher
than the no bulwark calculation, but the mean value has
been substantially increased. A subharmonic response and
increased roll amplitudes are observed.

Comparing Figures 14 and 15, a conclusion can
be drawn that accumulation of water-on-deck has a major
impact on ship dynamics: the subharmonic character of the
response might be attributed to water-on-deck influence.
Garkavy (1991) reported subharmonic rolling of a ship
with small freeboard (and as a result with water-on-deck)
observed during model tests.

Observed subharmonic roll could be a result of
period-doubling bifurcation, which is known to happen for
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nonlinear rolling in beam seas; see, for example, Nayfeh
and Sanchez (1990). Accumulation of water-on-deck leads
to a decrease of the instantaneous restoring moment. As a
result, ship roll could be shifted close to the nonlinear
region in the vicinity of the GZ curve’s peak, which might
facilitate the bifurcation of the periodic solution.

However, in order to state that the observed
behavior is the manifestation of period-doubling
bifurcation, it is necessary to analyze the stability of steady
state motion, which is beyond of the scope of the
preliminary study presented here.

At the same time, the above consideration could
be seen as a possible physical explanation of the observed
results and as an indicator of validity for the described
numerical model of water-on-deck.

6. CONCLUSIONS

A computational simulation system for predicting
ship motions, including the effects of green-water-on-
deck, has been developed by integrating a series of water-
on-deck models into a nonlinear time-domain ship motion
computer simulation. These models include both a simple
calculation of the deck-in-water effects using hydrostatic
and Froude-Krylov pressure and an advanced finite-
volume calculation of the flow of water over the deck with
the assumption of shallow water. In the present simulation,
the option for modeling the deck in the calculation is
selected a priori. A more general approach to the problem
may be to allow the calculation to shift between models as
the problem changes from deck-in-water to water-on-deck.
Such an approach presents many technical challenges, of
course, but may be the appropriate framework for future
development in this area.

Nevertheless, a study of the rolling behavior of a
21-meter fishing vessel seems to indicate that the present
system is able to capture two major phenomena associated
with water-on-deck and deck-in-water situations and
known from experiments. The first is associated with
increased damping caused both by the flow of water over
the deck and the influence of the deck entering the water.

The second phenomenon is associated with
subharmonic regular roll response of a ship with periodic
immersion of the deck and an accumulation of green-
water. This type of behavior, which has been previously
observed in model tests, could be physically explained by
the present results.

While the present analysis stops well short of
constituting a validation study, the observation of these
phenomena helps to suggest that the present model of
nonlinear ship motion with water-on-deck is qualitatively
reasonable. At the same time, the authors understand that
this only represents an initial proof of adequacy and that
rigorous validation and testing are required.
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